以质量求发展,以服务铸品牌

Journal of Nursing ›› 2025, Vol. 32 ›› Issue (7): 70-75.doi: 10.16460/j.issn1008-9969.2025.07.070

Previous Articles     Next Articles

Construction of prediction model for prolonged hospital stay in patients undergoing laparoscopic radical surgery for colon cancer

CHEN Yuanxinga, GUO Yanb, WANG Honghaoa, LIU Gaoa   

  1. a. Dept. of Colorectal and Anal Surgery; b. Dept. of Breast Surgery, the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
  • Received:2025-01-19 Online:2025-04-10 Published:2025-05-06

Abstract: Objective To develop a prediction model of prolonged hospital stay (PLOS) in patients undergoing laparoscopic radical surgery for colon cancer. Method A total of 369 patients were randomly divided into a modeling group and a validation group at a ratio of 7:3. The modeling group was used to analyze risk factors of PLOS and establish a risk prediction model. The model performance was evaluated using ROC curve, followed by external validation in the validation group. Results The prediction model for PLOS in patients undergoing laparoscopic radical resection for colon cancer was as follows: Logit (P/1-P)=-0.155 + 0.321 × age +0.067 × BMI + 0.092 × preoperative intestinal obstruction + 0.128 × surgery time + 0.185 × postoperative hospital acquired pneumonia + -0.201 × perioperative use of nonsteroidal anti-inflammatory drugs. The predictive performance of the model constructed from the modeling group demonstrated a ROC-AUC of 0.871. Validation set analysis yielded a ROC-AUC of 0.863. DeLong’s test comparing ROC-AUC values between modeling and validation group showed no statistically significant difference (P=0.779). Conclusion The PLOS prediction model constructed in this study demonstrates high predictive efficiency for patients undergoing laparoscopic radical surgery for colon cancer.

Key words: laparoscopy, radical surgery for colon cancer, length of hospital stay, prediction model

CLC Number: 

  • R473.6
[1] Mocan L.Laparoscopic surgery for the treatment of colon cancer: the new standard?[J]. Eur Rev Med Pharmacol Sci actions,2021,25(12):4228-4235.DOI:10.26355/eurrev_202106_26128.
[2] Jo YY, Han JH, Park HW, et al.Prediction of prolonged length of hospital stay after cancer surgery using machine learning on electronic health records:retrospective cross-sectional study[J]. JMIR Med Inform,2021, 9(2):e23147. DOI:10.2196/23147.
[3] Hashmi SA, Raja MHR, Arif A, et al.Reducing post-operative length of stay, is it worth the effort?[J]. World J Surg,2024,48(5):1096-1101. DOI:10.1002/wjs.12115.
[4] Schneider EB, Hyder O, Brooke BS, et al.Patient readmission and mortality after colorectal surgery for colon cancer: impact of length of stay relative to other clinical factors[J]. J Am Coll Surg,2012,214(4):390-398. DOI:10.1016/j.jamcollsurg.2011.12.025.
[5] Tamagawa H, Numata M, Aoyama T, et al.Laparoscopic-assisted surgery versus open surgery for transverse colon cancer: a multicenter retrospective study[J]. J Cancer Res Ther,2022,18(4):898-902.DOI:10.4103/jcrt.JCRT_946_20.
[6] 吴佳瑶,王成立,周声宁,等.结肠癌根治术患者住院时间延长的围术期相关危险因素分析[J].岭南现代临床外科,2022,22(6):555-559. DOI:10.3969/j.issn.1009-976X.2022.06.005.
[7] Dadi HH, Habte N, Mulu Y.Length of hospital stay and associated factors among adult surgical patients admitted to surgical wards in amhara regional state comprehensive specialized hospitals,Ethiopia[J].PLoS One,2024,19(8):e0296143. DOI:10.1371/journal.pone.0296143.
[8] 中华医学会,中华医学会杂志社,中华医学会全科医学分会,中华医学会《中华全科医师杂志》编辑委员会,内分泌系统疾病基层诊疗指南编写专家组.肥胖症基层诊疗指南(2019年)[J].中华全科医师杂志, 2020, 19(2):95-101. DOI:10.3760/cma.j.issn.1671-7368.2020.02.002.
[9] Zhao HQ, Fan SR, Sun JC.Delayed Wound Healing in the elderly and a new therapeutic target:CD271[J]. Curr Stem Cell Res Ther, 2024, 19(3):316-323. DOI:10.2174/1574888X18666230403083603.
[10] 姚晨晨,陈娟,杨雷.老年衰弱患者基于埃德蒙顿衰弱量表评估分层抗阻运动的效果观察[J].护理学报,2024,31(7):73-78. DOI:10.16460/j.issn1008-9969.2024.07.073.
[11] Gazdikova K, Fojtova A, Wsolova L, et al.Nutritional status and risk of malnutrition[J]. Bratisl Lek Listy, 2024,125(7) :399-403. DOI:10.4149/BLL_2024_61.
[12] Lee DU, Fan GH, Hastie DJ, et al.The clinical impact of malnutrition on the postoperative outcomes of patients undergoing colorectal resection surgery for colon or rectal cancer: propensity score matched analysis of 2011-2017 US hospitals[J]. Surg Oncol,2021,38:101587. DOI:10.1016/j.suronc.2021.101587.
[13] Zunzunegui JP, García MA, Cruz BM, et al.Impact of the implementation of a preoperative nutritional program for colorectal surgery patients[J]. Rev Esp Enferm Dig,2020,112(12):909-914. DOI:10.17235/reed.2020.6572/2019.
[14] 张乔,刘昌丹,鲁小小,等.基于理论域框架的护士临床应用指南规范实施肠内营养的障碍因素分析[J]. 护理学报,2023,30(20):63-67. DOI:10.16460/j.issn1008-9969.2023.20.063.
[15] Lee YH, Kim DH, Kim JS, et al.Risk Assessment of Postoperative Pneumonia in Cancer patients using a common data model[J]. Cancers (Basel), 2022,14(23):5988. DOI:10.3390/cancers14235988.
[16] Hoyuela C, Guillaumes S, Ardid J, et al.The impact of intracorporeal anastomosis in right laparoscopic colectomy in the surgical site infections and the hospital stay: a cohort study[J]. Updates Surg,2021,73(6):2125-2135. DOI:10.1007/s13304-021-00998-5.
[17] 岑磊磊. 结肠癌根治术后并发症的Clavien-Dindo分级及其危险因素分析[J].中国现代普通外科进展, 2021,24(9):706-710. DOI:10.3969/j.issn.1009-9905.2021.09.007.
[18] Boeding JRE, Gobardhan PD, Rijken AM, et al.Preoptimisation in patients with acute obstructive colon cancer (PREOCC)- a prospective registration study protocol[J]. BMC Gastroenterol, 2023, 23(1):186.DOI:10.1186/s12876-023-02799-z.
[19] Schootman M, Li Ch, Ying J, et al.Maximizing readmission reduction in colon cancer patients[J]. J Surg Res, 2024,295:587-596. DOI:10.1016/j.jss.2023.11.047.
[20] 刘春兰,陈涛,刘莉莉,等.老年结肠癌根治术患者术后瞻妄的相关因素分析[J].中国普外基础与临床杂志,2024,31(6):733-738. DOI:10.7507/1007-9424.202312038.
[21] Burlacu R, Bourdin V, Blin P, et al. Over-the-counter non-steroidal anti-inflammatory medications: Focus on the management of acute pain[J]. Therapie,2024,S0040-5957(24)00177-X. DOI:10.1016/j.therap.2024.10.061.
[1] LIU Yaomiao, LI Lezhi, HE Ling, YANG Ruili, XIE Juanyu, WU Nana, LIU Yanmei. Construction of prediction model for subsyndromal delirium in patients after cardiac surgery based on random frorest algorithm [J]. Journal of Nursing, 2025, 32(7): 6-10.
[2] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[3] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[4] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[5] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[6] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[7] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[8] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[9] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[10] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[11] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[12] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[13] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[14] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[15] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!