以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (1): 17-21.doi: 10.16460/j.issn1008-9969.2023.01.017

Previous Articles     Next Articles

Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer

LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na   

  1. Dept. of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110000, China
  • Received:2022-09-19 Online:2023-01-10 Published:2023-02-22

Abstract: Objective To construct prediction models for early discharge of endometrial cancer patients after enhanced recovery after surgery (ERAS) with random forest and Logistic regression, respectively, and compare the prediction effects of the 2 models. Methods Using convenience sampling, 328 patients with endometrial cancer who underwent ERAS and met the inclusion and exclusion criteria in a tertiary grade-A hospital from January 2019 to December 2021 were randomly assigned to model group and validation group according to the ratio of 7∶3, and the random forest and Logistic regression were used to construct the prediction models of early discharge after ERAS for patients with endometrial cancer. The performance of the 2 models was compared in terms of accuracy, sensitivity, specificity, positive predictive value, negative predictive value, Jorden index, and AUC of ROC. Results In the model group, the accuracy of random forest and Logistic regression was 1.000, and 0.896; sensitivity 1.000, and 0.833; specificity 1.000, and 0.915; positive predictive value 1.000, and 0.750; negative predictive value 1.000, and 0.942; Jorden index 1.000,and 0.729 and AUC 1.000, and 0.950 respectively; in the validation group, the accuracy of random forest and Logistic regression was 0.969, and 0.888; sensitivity 0.960, and 0.750; specificity 0.973, and 0.943; positive predictive value 0.923, and 0.840; negative predictive value 0.986, and 0.904; Jorden’s index 0.933, 0.693, and AUC 0.940, and 0.900, respectively. Conclusion Random forest model outperforms Logistic regression model in predicting early discharge after enhanced recovery after surgery for endometrial cancer patients.

Key words: random forest, Logistic regression, enhanced recovery after surgery, endometrial cancer patients, prediction model, length of stay

CLC Number: 

  • R713
[1] 刘美玲,龚桂芳,肖玉梅,等. 日间病房妇科腹腔镜手术患者快速康复循证护理实践[J]. 护理学报, 2019,26(15):31-35. DOI:10.16460/j.issn1008-9969.2019.15.031.
[2] Crane EK, Brown J, Lehman A, et al.Perioperative recovery and narcotic use in laparoscopic versus robotic surgery for endometrial cancer[J]. J Minim Invasive Gynecol, 2021,28(11):1898-1902. DOI: 10.1016/j.jmig.2021.04.022.
[3] 中国抗癌协会妇科肿瘤专业委员会. 子宫内膜癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021,31(6):501-512. DOI:10.19401/j.cnki.1007-3639.2021.06.08.
[4] Berian JR, Ban KA, Liu JB, et al.Adherence to enhanced recovery protocols in NSQIP and association with colectomy outcomes[J]. Ann Surg, 2019,269(3):486-493. DOI: 10.1097/SLA.0000000000002566.
[5] De Nonneville A, Jauffret C, Braticevic C, et al.Enhanced recovery after surgery program in older patients undergoing gynaecologic oncological surgery is feasible and safe[J]. Gynecol Oncol, 2018,151(3):471-476. DOI:10.1016/j.ygyno.2018.09.017.
[6] Smith CG, Davenport DL, Hoffman MR.Characteristics associated with prolonged length of stay after myomectomy for uterine myomas[J]. J Minim Invasive Gynecol, 2019,26(7):1303-1310. DOI: 10.1016/j.jmig.2018.12.015.
[7] Crane EK, Brown J, Lehman A, et al.Perioperative recovery and narcotic use in laparoscopic versus robotic surgery for endometrial cancer[J]. J Minim Invasive Gynecol, 2021,28(11):1898-1902. DOI: 10.1016/j.jmig.2021.04.022.
[8] Shao W, Zhang Z, Zhang J, et al.Charlson comorbidity index as a predictor of short-term outcomes after pulmonary resection[J]. J Thorac Dis, 2020,12(11):6670-6679. DOI:10.21037/jtd-20-2264.
[9] Datta A, Sebastian A, Chandy RG, et al.Complications and outcomes of diaphragm surgeries in epithelial ovarian malignancies[J]. Indian J Surg Oncol, 2021,12(4):822-829. DOI: 10.1007/s13193-021-01438-x.
[10] 马佳楚,商临萍,李淑花,等. 慢性阻塞性肺疾病患者住院时间延长危险因素的Meta分析[J].解放军护理杂志, 2022,39(2):60-63.
[11] Sánchez-Iglesias JL, Gómez-Hidalgo NR,Pérez-Benavente A, et al.Importance of enhanced recovery after surgery (ERAS) protocol compliance for length of stay in ovarian cancer surgery[J]. Ann Surg Oncol, 2021,28(13):8979-8986. DOI: 10.1245/s10434-021-10228-2.
[12] 刘娇. 快速康复外科护理在腹腔镜宫颈癌根治术患者中的应用[J]. 医疗装备, 2019,32(21):181-183.
[13] 轩俊娜. 快速康复外科理念对子宫内膜癌手术患者术前焦虑和术后疼痛的影响[J].中国民康医学,2018,30(10):112-114.
[14] 吴莹. 快速康复外科理念在达芬奇机器人子宫内膜腺癌手术患者中应用的随机对照研究[D].郑州:郑州大学, 2021. DOI:10.27466/d.cnki.gzzdu.2021.000531.
[15] Obermair A, Janda M, Baker J, et al.Improved surgical safety after laparoscopic compared to open surgery for apparent early stage endometrial cancer: results from a randomised controlled trial[J]. Eur J Cancer, 2012,48(8):1147-1153. DOI: 10.1016/j.ejca.2012.02.055.
[16] Laughlin-Tommaso S K, Lu D, Thomas L, et al. Short-term quality of life after myomectomy for uterine fibroids from the COMPARE-UF fibroid registry[J]. Am J Obstet Gynecol,2020,222(4):341-345.DOI:10.1016/j.ajog.2019.09.052.
[17] 中华医学会外科学分会,中华医学会麻醉学分会. 中国加速康复外科临床实践指南(2021)(三)[J]. 中华麻醉学杂志, 2021,41(9):1044-1052.
[18] Giglio MT, Marucci M, Testini M, et al.Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials[J]. Br J Anaesth, 2009,103(5):637-646. DOI:10.1093/bja/aep279.
[19] 吴可可,胡晓春,陈丹,等. 1例剖宫产后产褥期急性肺栓塞合并心脏骤停患者急救护理[J]. 护理学报, 2019,26(2):61-63. DOI:10.16460/j.issn1008-9969.2019.02.061.
[20] McKenny M, Conroy P, Wong A, et al. A randomised prospective trial of intra-operative oesophageal doppler-guided fluid administration in major gynaecological surgery[J]. Anaesthesia, 2013,68(12):1224-1231. DOI:10.1111/anae.12355.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] CHEN Si-qi, LIU Ning, HOU Xiao-min, LU Shu-ying. Best evidence summary for perioperative nursing management of enhanced recovery after surgery in robotic surgery for gastric cancer [J]. Journal of Nursing, 2024, 31(8): 31-36.
[3] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[4] YU Feng-xia, YU Yuan. Expert consensus on surgical nursing in enhanced recovery after surgery for esophageal cancer during perioperative period [J]. Journal of Nursing, 2024, 31(17): 61-65.
[5] YANG Jian, ZHANG Ying, CHEN Xiao-yan, FENG Bi-long, HE Xue-yu. Doctor-nurse-patient accelerated rehabilitation clinical nursing pathway in patients with thoracoscopic resection of lung cancer [J]. Journal of Nursing, 2024, 31(13): 73-78.
[6] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[7] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[8] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[9] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[10] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[11] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[12] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[13] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[14] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[15] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!