以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (1): 22-27.doi: 10.16460/j.issn1008-9969.2023.01.022

Previous Articles     Next Articles

Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis

CHU Wen-qiang1, PENG Jun-xiang2, LI Dan-ling1   

  1. 1. Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China;
    2. Dept. of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2022-07-26 Online:2023-01-10 Published:2023-02-22

Abstract: Objective To investigate the dynamic changes over time of body temperature, procalcitonin, C-reactive protein and leukocyte count in patients after intracranial surgery and their diagnostic value for intracranial infections. Methods The clinical data of 1,308 patients with intracranial lesions treated by surgery were analyzed, and the patients were divided into infection group and non-infection group. The changes over time of body temperature, C-reactive protein, leukocyte count and mean level of leukocyte count were analyzed using generalized linear mixed model, and Logistic regression was used to predict the occurrence of infection. Results (1) The differences were statistically significant when comparing body temperature in the 2 groups on the 1st, 2nd, 3rd, 5th, 7th and 9th day after the surgery. There was no difference in leukocyte count, C-reactive protein and procalcitonin between the 2 groups within 2 days after surgery, and the differences were statistically significant when comparing these three indexes on the 3rd, 5th, 7th and 9th day after the surgery. (2) The AUC of the combined test of body temperature, leukocyte count, C-reactive protein and procalcitonin on the 2nd day was 0.802 (95% CI: 0.760 to 0.845), and the AUC could be increased to 0.915 (95% CI: 0.887 to 0.949) when the difference of the indicators between the 2nd and 3rd day were included. Conclusion The prediction accuracy can be greatly improved when the indicators and the difference of the indicators between day 2 and 3 are used for the prediction of intracranial infection, suggesting the necessity of considering both physiological indicators and their trends when diagnosing postoperative infection in clinical practice, which can also effectively improve the nursing quality of neurosurgical patients.

Key words: intracranial infection, leukocyte count, procalcitonin, C-reactive protein, prediction model

CLC Number: 

  • R473.6
[1] Yao J, Liu D.Logistic regression analysis of risk factors for intracranial infection after multiple traumatic craniotomy and preventive measures[J]. J Craniofac Surg, 2019,30(7):1946-1948.DOI:10.1097/SCS.0000000000004972.
[2] 王世华, 朱金君, 朱坤灿, 等. 开颅脑肿瘤术后颅内感染的特点与相关危险因素分析[J]. 中华肿瘤防治杂志, 2020,27(S1):8-9.
[3] Shi Z, Xu M, Wang Y, et al.Post-craniotomy intracranial infection in patients with brain tumors: a retrospective analysis of 5723 consecutive patients[J]. Brit J Neurosurg, 2017,31(1):5-9.DOI:10.1080/02688697.2016.1253827.
[4] Hu Y, He W, Yao D, et al.Intrathecal or intraventricular antimicrobial therapy for post-neurosurgical intracranial infection due to multidrug-resistant and extensively drug-resistant gram-negative bacteria: a systematic review and meta-analysis[J]. Int J Antimicrob Agents, 2019,54(5):556-561.DOI:10.1016/j.ijantimicag.2019.08.002.
[5] Lan G, Xiao-Liang Y, Hui-Kang Y, et al.Application value analysis of magnetic resonance imaging and computed tomography in the diagnosis of intracranial infection after craniocerebral surgery[J]. World J Clin Cases, 2020,8(23):5894-5901.DOI:10.12998/wjcc.v8.i23.5894.
[6] 简智恒. 神经外科术后炎症指标的变化趋势的临床研究[D]. 广州:南方医科大学, 2013.
[7] 胡云华, 李淑艳, 陈林芳, 等. 急诊开颅手术患者颅内感染的影响因素[J]. 中华医院感染学杂志, 2022,32(2):203-206.DOI:10.11816/cn.ni.2022-211788.
[8] 张立, 钱晓波, 叶经纬, 等. 重型颅脑损伤患者术后继发颅内感染的危险因素及血清PCT、CRP的预测价值[J]. 热带医学杂志,2020,20(12):1577-1580.DOI:10.3969/j.issn.1672-3619.2020.12.011.
[9] 周婧婧, 黄飞, 张旦旦, 等. 老年颅脑外伤术后颅内感染病原菌特点及多指标联合预警诊断模型建立[J]. 中国老年学杂志, 2022,42(6):1395-1398.DOI:10.3969/j.issn.1005-9202.2022.06.035.
[10] 张玉林, 杨龙, 金福强. C反应蛋白和降钙素原在脑出血术后合并感染中的作用研究[J]. 重庆医学, 2015,44(20):2849-2851.DOI:10.3969/j.issn.1671-8348.2015.20.041.
[11] Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression[J]. Am J Epidemiol,2007,165(6):710-718.DOI:10.1093/aje/kwk052.
[12] Riley RD, Ensor J, Snell K, et al.Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020,368:441.DOI:10.1136/bmj.m441.
[13] 中华医学会神经外科学分会, 中国神经外科重症管理协作组.中国神经外科重症患者感染诊治专家共识(2017)[J]. 中华医学杂志, 2017,97(21):1607-1614.DOI:10.3760/cma.j.issn.0376-2491.2017.21.005.
[14] Douglas B, Martin M, Ben B, et al.Fitting linear mixed-effects models using lme4[J]. J Stat Softw, 2015,67(1):1-48.DOI:10.18637/jss.v067.i01.
[15] Lenth RV,Buerkner P, Herve M, et al. Emmeans: estimated marginal means, aka least-squares means[EB/OL]. (2022-06-05)[2022-09-09]. https://cran.r-project.org/web/packages/emmeans/.
[16] LeDell E, Petersen M, van der Laan M. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates[J]. Electron J Stat, 2015, 9(1):1583-1607.DOI:10.1214/15-EJS1035.
[17] Jalali A, Alvarez-Iglesias A, Roshan D, et al.Visualising statistical models using dynamic nomograms[J]. PLoS One, 2019,14(11):e0225253.DOI:10.1371/journal.pone.0225253.
[18] 简智恒, 张喜安, 漆松涛, 等. 神经外科术后炎症指标的变化及意义[J]. 中华神经医学杂志, 2013,12(4):415-418.DOI: 10.3760/cma.j.issn.1671-8925.2013.04.021.
[19] 楚燕飞, 郑鲁, 姚智强, 等. 幕下开颅术后发热原因及处理[J]. 中国神经精神疾病杂志, 2011,37(5):260-265.DOI:10.3969/j.issn.1002-0152.2011.05.002.
[20] 卜娜分, 蔡海云, 黄涛, 等. 46例脑出血患者神经内镜下颅内血肿清除术的并发症观察及护理[J].护理学报, 2022,29(2):71-72.DOI:10.16460/j.issn1008-9969.2022.02.071.
[21] 张丹梅, 袁丽, 朱琪. 开颅手术后颅内感染风险预测模型构建及效果评价[J]. 中国感染控制杂志,2022,21(5):439-446.DOI:10.12138/j.issn.1671-9638.20222269.
[22] 邱锋, 蔡佩浩, 龚立, 等. 高血压脑出血微创穿刺术后颅内感染的临床特点及血清NLRP3、S-100b联合检测的预测价值[J]. 海南医学, 2022,33(5):550-553.DOI:10.3969/j.issn.1003-6350.2022.05.002.
[23] 孙占玉, 郭智霖, 王上桥. 血清PTX3和NLRP3联合检测在颅脑损伤术后颅内感染早期诊治中的应用研究[J]. 热带医学杂志,2022,22(6):837-841.DOI:10.3969/j.issn.1672-3619.2022.06.020.
[24] 顿士娟,邹琪,吴强,等.颅脑术后继发颅内感染患者脑脊液肝素结合蛋白水平的变化及意义[J].中华全科医学,2020,18(12):2017-2020. DOI:10.16766/j.cnki.issn.1674-4152.001677.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[4] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[5] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[6] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[7] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[8] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[9] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[10] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[11] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[12] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[13] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
[14] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
[15] WU Wei-xia, ZHANG Yi-ming, HE Zong-bin, HUANG Jing-wen, SHEN Hai-yan. Construction of Discharge Risk Prediction Model for Patients with Indwelled Double J Tubes after Upper Urinary Tract Calculi Operation [J]. Journal of Nursing, 2022, 29(4): 64-68.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!