以质量求发展,以服务铸品牌

Journal of Nursing ›› 2022, Vol. 29 ›› Issue (7): 1-6.doi: 10.16460/j.issn1008-9969.2022.07.001

    Next Articles

Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation

XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei   

  1. Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
  • Received:2021-10-25 Online:2022-04-10 Published:2022-05-10

Abstract: Objective To construct a risk prediction model for intraoperative hypothermia in patients undergoing radical resection of oral cancer based on various warming methods, to visualize the model and to evaluate its clinical value. Methods A total of 234 patients in a stomatological hospital of Nanjing were enrolled from January 2020 to November, and risk factors in hypothermia group (103 cases) and non-hypothermia group (131 cases) were compared and logistic regression was adopted for model construction. The discrimination of the model was evaluated by the area under the curve(AUC). Model calibration was done by Hosmer-Lemeshow goodness-of-fit test. A total of 100 patients were selected as the validation group from December 2020 to February 2021 to evaluate the application value of the model. Results The factors entering the predictive model were age (OR=1.033), BMI (OR=0.346), basal body temperature (OR=0.338), intraoperative fluid infusion (OR=2.320) and heating blanket temperature (OR=0.236). The p-value in the Hosmer-Lemeshow goodness of fit test was 0.656; the area under the subject operating characteristic curve 0.812; Youden index 0.530; sensitivity 0.767; specificity 0.763. Conclusion The model is effective for predicting the occurrence of hypothermia during radical resection of oral cancer, which provides reference for medical staff to take preventive measures for high-risk patients in the early stage.

Key words: radical resection of oral cancer, intraoperative hypothermia, prediction model, establishment and validation

CLC Number: 

  • R473.77
[1] Bray F, Ferlay J, Soerjomataram I, et al.Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2018,68(6):394-424.DOI:10.3322/caac.21492.
[2] Frank SM, Fleisher LA, Breslow MJ, et al.Perioperative Maintenance of Normothermia Reduces the Incidence of Morbid Cardiac Events:A Randomized Clinical Trial[J].JAMA, 1997,277(14):1127-1134.DOI:10.1001/jama.1997.0354
0380041029.
[3] Staikou C, Paraskeva A, Drakos E,et al.Impact of Graded Hypothermia on Coagulation and Fibrinolysis[J].J Surg Res,2011,167(1):125-130.DOI:10.1016/j.jss.2009.07.037.
[4] 梁浩,易杰.低体温对患者围手术期出血及凝血功能的影响[J].国际麻醉学与复苏志,2016,37(11):1031-1035.DOI:10.3760/cma.j.issn.1673-4378.2016.11.016.
[5] 史卓颖,张海伟,杜祥飞. 全身麻醉病人术中低体温发生预测模型的建立[J]. 护理研究,2021,35(2):246-249. DOI:10.12102/j.issn.1009-6493.2021.02.009.
[6] 普鹰,张莹,汤佳骏,等. 腹腔镜手术患者术中低体温预测模型的构建及应用[J]. 中华护理杂志,2019, 54(9):1308-1312. DOI:10.3761/j.issn.0254-1769.2019.09.005.
[7] Chen Y, Du H, Wei BH, et al.Development and Validation of Risk-stratification Delirium Prediction Model for Critically Ill Patients: A Prospective, Observational,Single-center Study[J].Medicine(Baltimore), 2017, 96(29): e7543.DOI:10.1097/MD.0000000000007543.
[8] 高永祥张晋昕. Logistic回归分析的样本量确定[J].循证医学, 2018, 18(2):122-124.DOI:10.12019/j.issn.1671-5144.2018.02.015.
[9] Pei L,Huang Y,Mao G,et al.Axillary Temperature,as Recorded by the i Thermonitor WT701,Well Represents Core Temperature in Adults Having Noncardiac Surgery[J]. Anesth Analg,2018,126(3):833-838.DOI:10.1213/ANE.00000000000
02706.
[10] Seamon MJ,Wobb J,Gaughan JP,et al.The Effects of Intraoperative Hypothermia on Surgical Site Infection: An Analysis of 524 Trauma Laparotomies[J].Ann Surg,2012,255(4):789-795.DOI:10.1097/SLA.0b013e31824b7e35.
[11] Chen X, Zhao J, Huang B, et al.Abdominal Compartment Syndrome after Endovascular Repair for Ruptured Abdominal Aortic Aneurysm Leads to Acute Intestinal Necrosis: Case Peport[J]. Medicine(Baltimore),2016,95(47):e5316.DOI:10.1097/MD.0000000000005316.
[12] Li Y, Liang H, Feng Y.Prevalence and Multivariable Factors Associated with Inadvertent Intraoperative Hypothermia in Video-assisted Thoracoscopic Surgery: A Single-center Retrospective Study[J]. BMC Anesthesiol, 2020,20(1):25.DOI:10.1186/s12871-020-0953-x.
[13] Desgranges FP,Bapteste L,Riffard C,et al.Predictive Factors of Maternal Hypothermia during Cesarean Delivery:A Prospective Cohort Study[J].Can J Anesth,2017,64(9):919-927.DOI:10.1007/s12630-017-0912-2.
[14] 董涛. 老年腹部全身麻醉手术患者术中低体温的影响因素[J]. 中国老年学杂志,2020,40(6):1228-1231. DOI:10.3969/j.issn.1005-9202.2020.06.036.
[15] 严露培,姚丽丽,李跃荣,等. 手术患者非计划性术中低体温风险预测模型研究进展[J]. 护理学报,2021,28(6):13-16. DOI:10.16460/j.issn1008-9969.2021.06.013.
[16] 孔珊珊,邓露,申海艳,等.剖宫产产妇术中低体温风险预测模型的构建及应用效果研究[J].中华护理杂志,2021,56(2):165-171.DOI:10.3761/j.issn.0254-1769.2021.02.001.
[17] 李丽,颜艳,房馨,等.腹腔镜手术患者术中低体温风险预测模型的构建及验证[J].中华护理杂志,2022,57(4):463-468. DOI:10.3761/j.issn.0254-1769.2002.04.012.
[18] 管恩玲,孙建良,陈淑萍,等.老年患者术中低体温的相关因素及其处置对策[J].中华老年医学杂志,2019,38(7):783-786.DOI:10.3760/cma.j.issn.0254-9026.2019.07.016.
[19] 马扬,代玉婷,马铃.术中加温输液对中老年结直肠肿瘤手术患者术后恢复质量的影响[J].现代肿瘤学,2018,26(5):713-717.DOI:10.3969/j.issn.1672-4992.2018.05.016.
[20] 刘瑞红,朱松,万晶晶,等.加温输液对预防产妇剖宫产术后低体温和寒颤有效性的Meta分析[J].护理学报,2018,25(2):41-47.DOI:10.16460/j.issn1008-9969.2018.02.041.
[21] 张曼曼,段红香,周晓阳,等.降低神经外科全麻手术患者术中低体温发生率的PDCA实践[J].护理学报,2021,28(12):10-15.DOI:10.16460/j.issn1008-9969.2021.12.010.
[22] Poveda VB, Martinez EZ, Galvão, CM.Active Cutaneous Warming Systems to Prevent Intraoperative Hypothermia:A Systematic Review[J].Rev Lat Am Enfermagem,2012,20(1):183-191.DOI:10.1590/s0104-11692012000100024.
[23] 骆佳佳,方亮,刘琴,等.主动加温装置对椎管内麻醉病人围术期低体温干预效果的Meta分析[J].护理研究,2020,34(7):1157-1164.DOI:10.12102/j.issn.1009-6493.2020.07.012.
[24] 孔珊珊,申海艳,郑洪,等.医护人员实施剖宫产术中体温管理影响因素的质性研究[J].护理学杂志,2020,35(23):31-34+41.DOI:10.3870/j.issn.1001-4152.2020.23.031.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[4] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[5] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[6] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[7] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[8] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[9] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[10] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[11] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[12] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[13] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[14] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
[15] WU Wei-xia, ZHANG Yi-ming, HE Zong-bin, HUANG Jing-wen, SHEN Hai-yan. Construction of Discharge Risk Prediction Model for Patients with Indwelled Double J Tubes after Upper Urinary Tract Calculi Operation [J]. Journal of Nursing, 2022, 29(4): 64-68.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!