以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (1): 52-57.doi: 10.16460/j.issn1008-9969.2024.01.052

Previous Articles     Next Articles

Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review

SHI Ting-ting1, LI Ting2a, HUANG You-peng3a, ZHAO Yuan3b, ZHU Xiao-li2b, ZHOU Meng-juan3a, CHEN Yun-mei1   

  1. 1. School of Nursing, Honghe Health Vocational College, Mengzi 661100, China;
    2a. Dept. of Emergency; 2b. Dept. of Endocrinology, the First Affiliated Hospital of Dali University, Dali 671000, China;
    3a. School of Nursing; 3b. School of Public Health, Dali University, Dali 671000, China
  • Received:2023-09-02 Online:2024-01-10 Published:2024-02-19

Abstract: Objective To conduct a scoping review on risk prediction model of osteoporosis in patients with type 2 diabetes, and to provide reference for its prevention and clinical nursing. Methods The Chinese and English databases were systematically searched, and the risk of literature bias was evaluated. The incidence of osteoporosis in patients with type 2 diabetes, model construction, model predictors and performance were extracted, and the predictors of risk prediction model were classified. Results Sixteen studies were included, involving 16 models. The prevalence of osteoporosis in patients with type 2 diabetes ranged from 14.4% to 54.08%. The overall effectiveness of the model was good, but the method of model construction was single. Age, duration of diabetes and body mass index were important factors in the risk prediction model of osteoporosis in patients with type 2 diabetes. Conclusion Nursing staff should pay attention to the high risk factors of osteoporosis in patients with type 2 diabetes, and evaluation tools with good performance should be considered to guide nursing practice. A model with good performance and strong practicability can be constructed by means of visualization, and be continuously optimized through forward-looking, multi-center and external verification in order to achieve the best prediction effect and provide timely intervention for the patients.

Key words: type 2 diabetes, osteoporosis, prediction model, risk prediction, scoping review

CLC Number: 

  • R473.58
[1] Prost S, Pesenti S, Fuentes S, et al.Treatment of osteoporotic vertebral fractures[J]. Orthop Traumatol-sur,2021,107(1S):102779.DOI:10.1016/j.otsr.2020.102779.
[2] Zheng Y, Ley SH, Hu FB.Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endoc,2018,14(2):88-98.DOI:10.1038/nrendo.2017.151.
[3] Wang L, Zhang D, Xu J.Association between the Geriatric Nutritional Risk Index,bone mineral density and osteoporosis in type 2 diabetes patients[J]. J Diabetes Investig,2020,11(4):956-963.DOI:10.1111/jdi.13196.
[4] Wu X, Zhai F, Chang A, et al.Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus[J].J Endocrinol Invest,2023,46(12):2535-2546.DOI:10.1007/s40618-023-02109-0.
[5] Moons KGM, De Groot JAH, Bouwmeester W, et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[6] Moons KGM, Wolff RF, Riley RD, et al.PROBAST:a tool toassess risk of bias and applicability of prediction model studies:explanation and elaboration[J]. Ann Intern Med,2019,170(1):W1-W33. DOI:10.7326/M18-1377.
[7] 符玲玲. 2型糖尿病合并骨质疏松的危险因素及风险列线图模型的建立[J].吉林医学,2022,43(3):623-626.DOI:10.3969/j.issn.1004-0412.2022.03.016.
[8] 曾锦辉,王晓云,宋渊浩,等.2型糖尿病合并骨质疏松危险因素Logistic回归分析[J].中国卫生标准管理,2023,14(4):101-105. DOI:10.3969/j.issn.1674-9316.2023.04.022.
[9] 王秋怡,陈显英,符茂雄.2型糖尿病女性患者绝经后骨质疏松预测模型的构建与验证[J].中国现代医学杂志,2022,32(10):53-59.DOI:10.3969/j.issn.1005-8982.2022.10.010.
[10] 周影,潘卫民,肖欢,等.海口地区常住居民老年2型糖尿病患者骨质疏松发生风险列线图预测模型的建立与评估[J].中国老年学杂志,2022, 42(21):5251-5255.DOI:10.3969/j.issn.1005-9202.2022.21.029.
[11] 谢碧燕,陈小燕.中老年2型糖尿病合并骨质疏松症风险预测模型的构建与验证[J].中外医学研究, 2022,20(23):173-177.DOI:10.14033/j.cnki.cfmr.2022.23.044.
[12] 梁赟,虞艳芳. 2型糖尿病患者绝经后骨质异常与OSTA指数间的相关性研究[J].检验医学与临床, 2014,11(20):2822-2827.DOI:10.3969/j.issn.1672-9455.2014.20.010.
[13] 王环君,李琳,高海花,等.老年营养风险指数与老年男性2型糖尿病患者骨密度和骨质疏松症的关系[J].中国骨质疏松杂志,2021,27(12):1739-1744.DOI:10.3969/j.issn.1006-7108.2021.12.004.
[14] 倪会芳,李隽,丁源,等.中性粒细胞/淋巴细胞比值和单核细胞/高密度脂蛋白胆固醇比值预测绝经后2型糖尿病患者发生骨质疏松症的价值研究[J]. 中国全科医学,2022,25(18):2207-2214.DOI:10.12114/j.issn.1007-9572.2022.02.021.
[15] Tang JL, Pan BB, Shu Y, et al.Evaluation of two tools for the early screening of osteoporosis in postmenopausal Chinese women with type 2 diabetes mellitus[J]. J Int Med Res,2020,48(3):300060520903889.DOI:10.1177/0300060520903889.
[16] Wu Y, Xing X, Ye S, et al.Lipid levels related to osteoporosis in Patients with type 2 diabetes[J]. Exp Clin Endocrinol Diabetes, 2019, 127(7):468-472.DOI:10.1055/a-0735-9361.
[17] Raška I Jr, Rašková M, Zikán V, et al.Prevalence and risk Factors of osteoporosis in postmenopausal women with type 2 diabetes Mellitus[J]. Cent Eur J Public Health,2017,25(1):3-10. DOI:10.21101/cejph.a4717.
[18] Li T, Hu L, Yin XL, et al.Prevalence and risk factors of osteoporosis in patients with type 2 diabetes mellitus in Nanchang (China):a retrospective cohort study[J].Diabetes Metab Syndr Obes,2022(15):3039-3048.DOI:10.2147/DMSO.S372348.
[19] Sta Romana M, Li-Yu JT.Investigation of the relationship between type 2 diabetes and osteoporosis using Bayesian inference[J].J Clin Densitom,2007,10(4):386-390.DOI:10.1016/j.jocd.2007.08.001.
[20] Wang L, Zhang D, Xu J.Association between the Geriatric Nutritional Risk Index(GNRI), bone mineral density and osteoporosis in type 2 diabetes patients[J]. J Diabetes Investig,2020,11(4):956-963.DOI:10.1111/jdi.13196.
[21] Li JB, Zhang H, Yan L, et al.Homocysteine, an additional factor, is linked to osteoporosis in postmenopausal women with type 2 diabetes[J]. J Bone Miner Metab, 2014,32(6):718-24.DOI:10.1007/s00774-013-0548-4.
[22] Wen Y, Li H, Zhang X, et al.Correlation of osteoporosis in patients with newly diagnosed type 2 diabetes:a retrospective study in Chinese population[J].Front Endocrinol (Lausanne),2021(12):531904.DOI:10.3389/fendo.2021.531904.
[23] 张旋,罗丽娅,王瞭信,等.2型糖尿病合并骨质疏松患者外周血中VDR mRNA表达与25(OH) D、甘油三酯的关系研究[J].中国骨质疏松杂志,2019,25(6):742-746.DOI:10.3969/j.issn.1006-7108.2019.06.003.
[24] 李静,侯云霞,强万敏.癌症患者非计划性再入院风险预测模型的范围综述[J].中华护理杂志,2022, 57(9):1079-1087.DOI:10.3761/j.issn.0254-1769.2022.09.008.
[25] Zou Y, Zhao L, Zhang J, et al.Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease[J]. Ren Fail,2022,44(1):562-570.DOI:10.1080/0886022X.2022.2056053.
[26] Cooray SD, Boyle JA, Soldatos G, et al.Development, validation and clinical utility of a risk prediction model for adverse pregnancy outcomes in women with gestational diabetes: the PeRSonal GDM model[J]. E Clinical Medicine,2022(52):101637.DOI:10.1016/j.eclinm.2022.101637.
[27] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021,28(7):30-34.DOI:10.16460/j.issn1008-9969.2021.07.030.
[28] Li R, Yuan K, Yu X, et al.Construction and validation of risk prediction model for gestational diabetes based on a nomogram[J].Am J Transl Res,2023,15(2):1223-1230.
[29] Wang GX, Hu XY, Zhao HX, et al.Development and validation of a diabetic retinopathy risk prediction model for middle-aged patients with type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne),2023(14):1132036.DOI:10.3389/fendo.2023.1132036.
[30] Bu F, Deng XH, Zhan NN, et al.Development and validation of a risk prediction model for frailty in patients with diabetes[J].BMC Geriatr,2023,23(1):172.DOI:10.1186/s12877-023-03823-3.
[31] 张海燕,于卫华,张利,等. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J].护理学报,2023,30(22):13-19.DOI:10.16460/j.issn1008-9969.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] CHEN En-lin, MO Feng-ling, ZHUANG Ze-ming, ZHANG Ming-zhe, ZHOU Jia-kun, HUANG Li-fang, JI Long-fei, ZHANG Li-fang. Assessment tools for unilateral spatial neglect after stroke: a scoping review [J]. Journal of Nursing, 2025, 32(3): 43-49.
[3] YANG Bei, YE Hong-fang, ZHANG Ning, XIANG Lu-wei, LU Shi-yu. Current status of physical activity and its influencing factors in elderly patients with type 2 diabetes [J]. Journal of Nursing, 2025, 32(2): 7-12.
[4] ZHU Tian-shun, ZHU Ke-ke, XUE Hui-yuan, JIAO Cong-cong, WEI Chang-hui, WANG He. Application of message framing theory in health management: a scoping review [J]. Journal of Nursing, 2025, 32(2): 44-49.
[5] BI Ya-xin, DUAN Ye, HE Li-jun, XU Miao, GONG Rong-hua. Best evidence summary for prevention and management of osteoporosis after metabolic, bariatric surgery [J]. Journal of Nursing, 2025, 32(1): 44-49.
[6] LI Ke, HE Yu-qiong, LI Yu-wei, CHANG Ying. Intervention programs for fear of falling in stroke patients: a scoping review [J]. Journal of Nursing, 2025, 32(1): 50-55.
[7] LI Ding-ding, WANG Shuai-you, ZHU Shan-shan, GUO Xin, ZHANG Hui-min, WANG Hong-ru, PAN Qin. Supportive care needs assessment tools for stroke patients: a scoping review [J]. Journal of Nursing, 2024, 31(9): 48-53.
[8] YE Xiang, LI Kai, HUANG Min, ZHANG Qian, LI Ji-min, LIU Rong-zhen, MENG Min, ZHU Shao-yu, XIE Cui-hua. Mobile APP plus family management of blood glucose for adult patients with type 2 diabetes [J]. Journal of Nursing, 2024, 31(9): 60-65.
[9] CAO Juan, LI Fang, YU Yue, DAI Li, YANG Dan-dan, LI Zhi-hua, XU Xin-yi, DAI Qi, CHEN Ke-yu. Construction and verification of risk prediction model for venous thromboembolism after esophageal cancer surgery [J]. Journal of Nursing, 2024, 31(8): 63-68.
[10] GUO Jun-chen, LIU Chao-yi, DAI Yun-yun, JIANG Si-shan, YANG Suo, CHEN Yong-yi. Virtual reality technology in patients at end of life: a scoping review [J]. Journal of Nursing, 2024, 31(7): 40-45.
[11] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[12] LI Wei, WANG Xiang, PEI Li, GAO Qing-qing, HUANG Hai-chao. Symptom clusters among women during late pregnancy: a scoping review [J]. Journal of Nursing, 2024, 31(3): 51-56.
[13] WANG Yue, LIU Guo-qing, NIU Cong-ying, ZHANG Zhen-wei, SUN Jian, CHU You-ai, QIN Han-zhi. Risk prediction models of 30-day mortality after surgery in patients with hip fractures: a scoping review [J]. Journal of Nursing, 2024, 31(24): 51-56.
[14] WANG Ai, ZHOU Bing-qian, CAO Hong. Application of Fracture Liaison Service in Patients with Osteoporotic Hip Fracture:a Scoping Review [J]. Journal of Nursing, 2024, 31(22): 48-53.
[15] WU Ping, YU Wan-chen, LIU Jia-yi, WANG Shan-shan, HU Yan. Social support among prediabetes population: a scoping review [J]. Journal of Nursing, 2024, 31(21): 49-54.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!