以质量求发展,以服务铸品牌

Journal of Nursing ›› 2022, Vol. 29 ›› Issue (4): 64-68.doi: 10.16460/j.issn1008-9969.2022.04.064

Previous Articles     Next Articles

Construction of Discharge Risk Prediction Model for Patients with Indwelled Double J Tubes after Upper Urinary Tract Calculi Operation

WU Wei-xia1,2, ZHANG Yi-ming1, HE Zong-bin2, HUANG Jing-wen2, SHEN Hai-yan1   

  1. 1. Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
    2. School of Nursing, Southern Medical University, Guangzhou 510515, China
  • Received:2021-10-10 Online:2022-02-25 Published:2022-04-01

Abstract: Objective To To investigate the risk factors of discharge of patients with indwelled double J tubes after upper urinary tract calculi operation, and establish a logistic regression prediction model. Methods A total of 435patients with indwelled double J tubes after upper urinary tract calculi operation in a hospital in Guangzhou from January to December in2020 were selected. The patients were divided into positive group with ureteral stent-related symptoms (n=207) and negative group without symptoms (n=228) and the clinical indicators of the both group were compared. Logistic regression analysis was used to establish a risk prediction model for discharged patients with indwelled double J tubes after upper urinary tract calculus surgery, and the prediction effect of the model was verified by ROC curve. Results Five independent risk factors including daily water intake, hypertension, diabetes, pre-operative urinary leukocyte numbers and stone residue were identified according to the stepwise regression analysis. We also constructed a risk prediction model base on five factors. The AUC of this model was 0.906, and when the critical value was -0.17, the sensitivity and the specificity were 0.842 and 0.832, respectively. Conclusion With good predictive effect, the prediction model constructed in the study has clinical application value and provides reference to predict the discharge risk of patients with indwelled double J tubes after upper urinary tract calculus surgery.

Key words: upper urinary calculi, double J tube, ureteral stent tube, prediction model, symptoms associated with ureteral stents

CLC Number: 

  • R473.6
[1] 付现敏. 输尿管支架管在泌尿外科中的临床使用价值[J]. 中国医药指南, 2019,17(13):3-4.DOI:CNKI:SUN:YYXK.0.2019-13-003.
[2] 黄莉燕,梁秋梅,王翠英,等. 经皮肾镜碎石取石患者术后全身炎症反应综合征的影响因素分析及护理对策[J]. 护理学报,2017, 24(13):65-67.DOI:10.16460/j.issn1008-9969.2017.13.065.
[3] 周文俊,范志江,屠文健,等. 输尿管支架管留置时间对老年输尿管软镜碎石取石术患者并发症及净石率的临床分析[J].老年医学与保健,2020,26(3):468-471.DOI:10.3969/j.issn.1008-8296.2020.03.036.
[4] 朱华,郑兵,陈新凤,等. 上尿路结石微创手术后严重并发症的临床观察和分析[J]. 中国医科大学学报, 2018, 47(9):850-853.DOI:10.12007/j.issn.0258-4646.2018.09.019.
[5] 刘丽欢,刘春香. 经皮肾镜取石术日间手术患者的规范化流程管理[J]. 护理学报,2020,27(9):14-18.DOI:10.16460/j.issn1008-9969.2020.09.014
[6] 田孟真,周萍,陈鹏,等. 中文版输尿管支架相关症状调查问卷的汉化及信效度分析[J]. 中华现代护理杂志, 2020, 26(16):2130-2137.DOI:10.3760/cma.j.cn115682-20191105-04008.
[7] 张立娟,毕清泉. 微信群在泌尿外科术后留置双J管患者延续护理中的应用效果[J].中国医药导报,2018,165-168.DOI:10.3969/j.issn.2095-6851.2019.29.146.
[8] 李海春,黄凌,王真,等.延续护理对输尿管结石术后携带双“J”管出院患者的效果[J].实用临床医学杂志. 2018,95-97.DOI:10.7619/jcmp.201818028.
[9] 曹帆,李尧,卞蓉蓉,等. 输尿管支架风险分析与改进建议[J].中国医疗器械信息,2019,25(11):30-31.DOI:10.3969/j.issn.1006-6586.2019.11.014.
[10] 于巍巍,赖春林,钟毅,等. 输尿管支架的临床应用[J]. 赣南医学院学报,2019,39(2):190-194.DOI:CNKI:SUN:GNYX.0.2019-02-024.
[11] Altunal N, Willke A, Hamzaoglu O.Ureteral Stent Infections: a Prospective Study[J]. Braz J Infect Dis, 2017,21(3):361-364.DOI:10.1016/j.bjid.2016.12.004.
[12] Xu C, Zhang C, Wang X, et al.Self-Fluid Management in Prevention of Kidney Stones[J]. Medicine, 2015, 94(27): e1042.DOI:10.1097/MD.0000000000001042.
[13] Tasian GE, Ross M, Song L, et al.Ecological Momentary Assessment of Factors Associated with Water Intake among Adolescents with Kidney Stone Disease[J]. J Urol, 2019, 201(3):606-614.DOI:10.1016/j.diabres.2021.108745.
[14] Streeper NM, Dubnansky A, Sanders AB, et al.Improving Fluid Intake Behavior among Patients with Kidney Stones: Understanding Patients' Experiences and Acceptability of Digital Health Technology[J]. Urology, 2019, 133:57-66.DOI:10.1016/j.urology.2019.05.056.
[15] 石从整,周琼,蒋立新,等. 双J管相关泌尿系感染临床特点分析[J]. 武汉大学学报(医学版), 2020, 41(3):448-452.DOI:10.14188/j.1671-8852.2019.0382.
[16] 杨悦,张永祥,刘娟,等. 无症状菌尿与有症状泌尿道感染患者的临床特点研究[J].中华医院感染学杂志, 2018, 28(14):2109-2111.DOI:10.11816/cn.ni.2018-171154.
[17] 宋昌泽. 上尿路结石腔内碎石术术后尿路感染的相关危险因素分析[D]. 呼和浩特:内蒙古医科大学,2018.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[4] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[5] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[6] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[7] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[8] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[9] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[10] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[11] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[12] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[13] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[14] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
[15] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!