以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (12): 73-78.doi: 10.16460/j.issn1008-9969.2023.12.073

Previous Articles    

Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section

ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing   

  1. Dept. of Obstetrics and Gynecology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, China
  • Received:2023-02-10 Online:2023-06-25 Published:2023-07-10

Abstract: Objective To explore the influencing factors of cognitive dysfunction in pregnant women with cesarean section, and to construct a risk prediction model. Methods A total of 212 pregnant women who underwent cesarean section in the obstetrics and gynecology department of a tertiary grade-A hospital in Xi'an from September 2020 to December 2021 were enrolled and divided into cognitive dysfunction group (n=68) and non-cognitive dysfunction group (n=144). Univariate analysis and binary logistic regression were used to analyze the influencing factors of cognitive dysfunction in pregnant women with cesarean section, and a risk prediction model was constructed and verified internally. Result Postoperative analgesia time was a protective factor for cognitive dysfunction in pregnant woman with cesarean section (OR=0.164), and vaginal delivery to cesarean section (OR=2.827), intraoperative blood loss (OR=3.947), anxiety/depression (OR=5.272), gestational hypertension (OR=5.475), and gestational diabetes (OR=10.111) were risk factors. The risk prediction model had a good fit (Hosmer-Lemeshow test: χ2=13.961, P=0.083). The internal verification of the model showed that the area under the ROC curve was 0.800, which had a good degree of discrimination. The mean absolute error between the actual value and the predicted value of the calibration curve was 0.043, showing a good degree of calibration. When the risk threshold of the decision curve was greater than 0.130, the model provided significant net clinical benefit. Conclusion The risk prediction model of cognitive dysfunction in pregnant women with cesarean section is scientific and practical, which can help medical staff identify the risk of cognitive dysfunction in pregnant women with cesarean section.

Key words: pregnant women, cesarean section, cognitive dysfunction, influencing factor, nomogram, prediction model

CLC Number: 

  • R473.71
[1] 中华人民共和国中央人民政府.中共中央国务院关于优化生育政策促进人口长期均衡发展的决定[R/OL].(2021-07-20)[2022-01-28].http://www.gov.cn/xinwen/2021-07/20/content_5626190.htm.
[2] 曾梓林,熊翊辰,罗宇,等.湖南地区大学生生育意愿与生育观念调查分析[J].中国优生与遗传杂志,2021,29(9):1339-1342.DOI:10.13404/j.cnki.cjbhh.20211201.003.
[3] 国家统计局. 第七次全国人口普查公报(第八号)[R/OL].(2021-05-11)[2022-01-28].http://www.stats.gov.cn/ztjc/zdtjgz/zgrkpc/dqcrkpc/ggl/202105/t20210519_1817701.html.
[4] Meena PS, Soni R, Jain M, et al.Cognitive dysfunction and associated behaviour problems in postpartum women: a study from North India[J].East Asian Arch Psychiatry,2016,26(3):104-108.
[5] Qiu T, Wen H, Liu ZX, et al.Investigation regarding early cognitive function of women in the postpartum period and the analysis of influencing factors[J]. Risk Manag Healthc Policy,2021,14(10):3747-3754.DOI:10.2147/RMHP.S309553.
[6] 温慧,曾涛,邱婷,等.产后妇女认知功能的现况调查及影响因素分析[J].广州医药,2021,52(1):81-86. DOI:10.3969/j.issn.1000-8535.2021.01.016.
[7] 吴亚萍,瞿福娟,郭楚.活跃期分娩镇痛对经阴道分娩产妇产后认知功能的影响[J].国际妇产科学杂志, 2019,46(6):664-667.DOI:10.3969/j.issn.1674-1870.2019.06.015.
[8] 颜艳,王彤.医学统计学[M].5版.北京:人民卫生出版社,2020:507-511.
[9] 中国痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会.2018中国痴呆与认知障碍诊治指南(五):轻度认知障碍的诊断与治疗[J].中华医学杂志,2018,98(17):1294-1301. DOI:10.3760/cma.j.issn.0376-2491.2018.17.003.
[10] Knopman DS, Petersen RC.Mild cognitive impairment and mild dementia: a clinical perspective[J]. Mayo Clin Proc,2014,89(10):1452-1459.DOI:10.1016/j.mayocp.2014.06.019.
[11] 中国老年医学学会认知障碍分会. 临床痴呆评定量表简体中文版[J]. 中华老年医学杂志,2018,37(4):367-371.DOI:10.3760/cma.j.issn.0254-9026.2018.04.002.
[12] Petersen RC, Lopez O, Armstrong MJ, et al.Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology[J]. Neurology,2018,90(3):126-135.DOI:10.1212/WNL.0000000000004826.
[13] Keskin FE, Ozyazar M, Pala AS, et al.Evaluation of cognitive functions in gestational diabetes mellitus[J]. Exp Clin Endocrinol Diabetes,2015, 123(4):246-251. DOI:10.1055/s-0034-1395634.
[14] Iadecola C, Gottesman RF.Neurovascular and cognitive dysfunction in hypertension[J]. Circ Res, 2019, 124(7):1025-1044. DOI: 10.1161/CIRCRESAHA.118.313260.
[15] Czyz-Szypenbejl K, Mędrzycka-Dąbrowska W, Kwiecień-Jagus K, et al. The Occurrence of postoperative cognitive dysfunction (POCD)-systematic review[J]. Psychiatr Pol,2019,53(1):145-160. DOI:10.12740/PP/90648.
[16] 温慧. 产后妇女认知功能的现况调查及影响因素分析[D]. 广州:广州医科大学,2020.DOI:10.27043/d.cnki.ggzyc.2020.000115.
[17] 周支瑞,李博,张天嵩.临床预测模型构建方法学[M].长沙:中南大学出版社,2021:21-32,87-105,122-129.
[18] Subramaniyan S, Terrando N.Neuroinflammation and perioperative neurocognitive disorders[J]. Anesth Analg,2019,128(4):781-788. DOI:10.1213/ANE.0000000000004053.
[19] 李芳芳,周嫣.2019版降低认知功能下降和认知障碍风险指南解读[J].上海护理,2020,20(5):1-7.DOI:10.3969/j.issn.1009-8399.2020.05.001.
[20] Snyder B, Simone SM, Giovannetti T, et al.Cerebral hypoxia: its role in sge-related chronic and acute cognitive dysfunction[J].Anesth Analg,2021,132(6):1502-1513. DOI:10.1213/ANE.0000000000005525.
[21] Li Y, Huang D, Su D, et al.Postoperative cognitive dysfunction after robot-assisted radical cystectomy(RARC) with cerebral oxygen monitoring an observational prospective cohort pilot study[J]. BMC Anesthesiol, 2019,19(1):202. DOI:10.1186/s12871-019-0877-5.
[22] 严艳,刘桂平,吴亚婷,等.剖宫产术后产妇疼痛灾难化现状及其影响因素分析[J].现代临床护理,2020,19(12):1-7.DOI:10.3969/j.issn.1671-8283.2020.12.001.
[23] Caughey AB, Wood SL, Macones GA, et al.Guidelines for intraoperative care in cesarean delivery: enhanced recovery after surgery society recommendations (Part 2)[J]. Am J Obstet Gynecol,2018,219(6):533-544. DOI:10.1016/j.ajog.2018.08.006.
[24] Friedrich MJ.Depression is the leading cause of disability around the world[J]. JAMA,2017,317(15):1517. DOI:10.1001/jama.2017.3826.
[25] 何茹碧,赖志存,田冬梅.广州市番禺区孕产妇围产期抑郁调查[J].中国妇幼保健,2016,31(4):804-807.DOI:10.7620/zgfybj.j.issn.1001-4411.2016.04.55.
[26] Hampson E, Phillips SD, Duff-canning SJ, et al. Working memory in pregnant women: relation to estrogen and antepartum depression[J]. Horm Behav,2015,74(8):218-227. DOI: 10.1016/j.yhbeh.2015.07.006.
[27] Wilkerson RG, Ogunbodede AC.Hypertensive disorders of pregnancy[J]. Emerg Med Clin North Am,2019,37(2):301-316. DOI:10.1016/j.emc.2019.01.008.
[28] 张旭明,王曦.高血压对认知功能的影响[J].心血管病学进展,2019, 40(7):977-981.DOI:10.16806/j.cnki.issn.1004-3934.2019.07.003.
[29] Mack LR, Tomich PG.Gestational diabetes: diagnosis, classification, and clinical care[J]. Obstet Gynecol Clin North Am,2017,44(2):207-217. DOI:10.1016/j.ogc.2017.02.002.
[30] John CM, Mohamed Yusof NIS, Abdul Aziz SH, et al.Maternal cognitive impairment associated with gestational diabetes mellitus-a Review of potential contributing mechanisms[J]. Int J Mol Sci,2018,19(12):3894. DOI:10.3390/ijms19123894.
[31] Koekkoek PS,Kappelle LJ, van den Berg E, et al. Cognitive function in patients with diabetes mellitus: guidance for daily care[J]. Lancet Neurol,2015,14(3):329-340. DOI: 10.1016/S1474-4422(14)70249-2.
[32] Bandos AI, Guo B, Gur D.Estimating the area under ROC curve when the fitted binormal curves demonstrate improper shape[J]. Acad Radiol,2017,24(2):209-219. DOI: 10.1016/j.acra.2016.09.020.
[33] Kong D, Zhao J, Tang S, et al.Logarithmic data processing can be used justifiably in the plotting of a calibration curve[J]. Anal Chem,2021,93(36):12156-12161. DOI:10.1021/acs.analchem.1c02011.
[34] 陆静钰,杨连招,陈玲,等.社区老年高血压患者轻度认知功能障碍风险预测模型的构建与验证[J].护理学报,2021,28(24):42-50.DOI:10.16460/j.issn1008-9969.2021.24.042.
[35] 赵晓蕊,龙云,陈思齐,等.妇科恶性肿瘤患者术后胃肠功能紊乱风险预测模型的构建及验证[J].护理学报,2022,29(3):72-78.DOI:10.16460/j.issn1008-9969.2022.03.072.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] WEI Li, ZHAO Xing-ying, LIU Jia, HE Yu-xuan, CHEN Xiao-mei, YANG Xue, XIAN Ji-shu, YANG Yan-ni. Care burden of family caregivers of severe inpatients in neurosurgery department and its influencing factors [J]. Journal of Nursing, 2025, 32(2): 1-6.
[3] YANG Bei, YE Hong-fang, ZHANG Ning, XIANG Lu-wei, LU Shi-yu. Current status of physical activity and its influencing factors in elderly patients with type 2 diabetes [J]. Journal of Nursing, 2025, 32(2): 7-12.
[4] CAO Juan, LI Fang, YU Yue, DAI Li, YANG Dan-dan, LI Zhi-hua, XU Xin-yi, DAI Qi, CHEN Ke-yu. Construction and verification of risk prediction model for venous thromboembolism after esophageal cancer surgery [J]. Journal of Nursing, 2024, 31(8): 63-68.
[5] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[6] HUANG Xin, YU Li-jun, ZHANG Er-ming, HA Li-na. Current status of energy intake in patients with stable COPD and its influencing factors [J]. Journal of Nursing, 2024, 31(5): 12-16.
[7] MOU Xiao-ling, CHEN Yu-qi, LIU Hai-yan, LI Min, DONG Min, HUANG Jia-jia, LI Xuan, CHEN Yu. Postoperative depression and its influencing factors among lung transplant recipients [J]. Journal of Nursing, 2024, 31(21): 7-11.
[8] YAO Yao, ZHANG Min, CHEN Yan, WANG Chun. Implementation difficulties of “Internet +” disability care service from perspective of user experience [J]. Journal of Nursing, 2024, 31(19): 1-7.
[9] JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72.
[10] WANG Li-ning, QI Na, BAI Feng-xin, LI Chao-nan, FANG Ting, LI Yang, ZHANG Hui. Father involvement during infancy and its influencing factors: a latent profile analysis [J]. Journal of Nursing, 2024, 31(19): 73-78.
[11] ZHANG Yi-fan, XU Xiao-xia, WANG Zi-jiao, LIU La-mei, LI Zhen-ying, MAO Zhen-xue. Latent categories of moral courage among nurses in oncology department and its influencing factors [J]. Journal of Nursing, 2024, 31(13): 7-11.
[12] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[13] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[14] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[15] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!