以质量求发展,以服务铸品牌

Journal of Nursing ›› 2025, Vol. 32 ›› Issue (7): 6-10.doi: 10.16460/j.issn1008-9969.2025.07.006

Previous Articles     Next Articles

Construction of prediction model for subsyndromal delirium in patients after cardiac surgery based on random frorest algorithm

LIU Yaomiao1, LI Lezhi1, HE Ling2, YANG Ruili2, XIE Juanyu2, WU Nana2, LIU Yanmei2   

  1. 1. School of Nursing, Hunan University of Traditional Chinese Medicine, Changsha 410508, China;
    2. Dept. of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha 410011, China
  • Received:2024-10-21 Online:2025-04-10 Published:2025-05-06

Abstract: Objective To explore the risk factors of subsyndromal delirium (SSD) in patients after cardiac surgery, to construct a prediction model for the occurrence of SSD in this group, and verify its performance. Methods A total of 549 surgical patients in the cardiac surgery department of a tertiary Grade-A hospital in Hunan Province from August 2023 to July 2024 were selected. They were divided into a non-delirium group and a delirium group based on the occurrence of SSD during their ICU stay. The patients were divided into a training set and a test set at a ratio of 7:3. A prediction model was developed using the random forest algorithm on the training set, validated in the testing set, and subjected to variable importance ranking. Results Among the 549 patients, 63 were diagnosed with SSD. There were no statistically significant differences between the non-delirium and delirium group in terms of sex, height, place of residence, and mode of admission (P>0.05). The variables selected by Lasso regression were incorporated into the model constructed by random forest algorithm, demonstrating that the predictive efficacy of the model in the test set was 0.959. The variables with importance ranking from high to low were the rate of adrenaline decline, the rate of noradrenaline decline, first-day urine output, mean corpuscular hemoglobin concentration (MCHC), body weight, age, post-MVR (mitral valve replacement), post-CABG (coronary artery bypass grafting), and post-AVR (aortic valve replacement). Conclusion The influencing factors for the occurrence of SSD in patients after cardiac surgery, with importance ranking from high to low are the rate of adrenaline decline, the rate of noradrenaline decline, first-day urine output, MCHC, body weight, age, post-MVR, post-CABG, and post-AVR. The model constructed by random forest algorithm has good predictive efficacy.

Key words: random forest algorithm, postoperative cardiac surgery, subsyndromal delirium, prediction model

CLC Number: 

  • R473.6
[1] 高燕, 甘秀妮, 杨睿琦, 等. 亚谵妄综合征的概念内涵及研究进展[J]. 中华护理杂志, 2021,56(12):1883-1888. DOI:10.3761/j.issn.0254-1769.2021.12.020
[2] 周晨曦, 汪晖, 吴前胜, 等. 体外循环下心血管手术患者术后谵妄发生情况及影响因素分析[J]. 四川大学学报(医学版),2023,54(4):752-758. DOI:DOI10.12182/20230760105.
[3] 李春红, 李陶幸子, 付丽芳, 等. 老年髋关节置换术后患者亚谵妄综合征发生现况调查[J]. 中华护理教育, 2023,20(2):237-239. DOI:10.3761/j.issn.1672-9234.2023.02.019.
[4] Tian L, Wu W, Yu T.Graph Random Forest: a graph embedded algorithm for identifying highly connected important features[J]. Biomolecules, 2023,13(7):1153. DOI:10.3390/biom13071153.
[5] Yuan X, Xu Q, Du F, et al.Development and validation of a model to predict cognitive impairment in traumatic brain injury patients: a prospective observational study[J]. EClinicalMedicine, 2025,80:103023. DOI:10.1016/j.eclinm.2024.103023.
[6] Ely EW, Margolin R, Francis J, et al.Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU)[J]. Crit Care Med,2001,29(7):1370-1379.DOI:10.1097/00003246-200107000-00012.
[7] 邹姮婧. 中文版CAM-ICU的信度效度检验及与其他量表的比较[D].武汉: 华中科技大学, 2012.
[8] 李瑛, 李贤煌, 胡燕, 等. 心脏外科术后患者发生谵妄危险因素的Meta分析[J]. 解放军护理杂志, 2022,39(6):72-76. DOI:10.3969/j.issn.1008-9993.2022.06.018.
[9] 刘海虹, 张小雷, 薛茹, 等. 基于机器学习的主观认知下降老年人认知功能状况的影响因素分析[J].护理学报, 2023, 30(23):57-62. DOI:10.16460/j.issn1008-9969.2023.23.057.
[10] 周菊珍, 王丽华, 陈秋萍, 等. 基于随机森林模型的抗肿瘤化疗患者经外周静脉植入中心静脉导管置管后导管相关感染及影响因素[J]. 中国感染控制杂志, 2024,23(2):201-207. DOI:10.12138/j.issn.1671-9638.20244345.
[11] 黄燕, 汤爱秀, 游明春, 等. 心脏术后谵妄与患者日常生活活动能力的相关性[J]. 中国老年学杂志, 2020,40(20):4455-4458.DOI:10.3969/j.issn.1005-9202.2020.20.058.
[12] 谭芮茜, 李华凤, 左一丁, 等. 胸外科手术患者发生术中低血压与术后谵妄的关系:一项回顾性队列研究[J]. 中国实验诊断学, 2024,28(7):788-794. DOI:10.3969/j.issn.1007-4287.2024.07.008.
[13] 洪亮, 孙加奎, 沈骁, 等. 心脏手术后谵妄的危险因素分析及预测模型构建[J]. 临床麻醉学杂志, 2020,36(12):1195-1200. DOI:10.12089/jca.2020.12.012.
[14] 康云平, 孙宝云. 平均红细胞血红蛋白浓度对溶血性贫血的诊断价值[J]. 疾病监测, 2008(6):368-369. DOI:10.3784/j.issn.1003-9961.2008.06.015.
[15] 杜磊, 周成斌, 吉冰洋. 成人心血管外科手术体外循环患者血液管理指南[J]. 中国胸心血管外科临床杂志,2024,31(11):1547-1559. DOI:10.7507/1007-4848.202408050.
[16] 田惠玉. 机械通气危重病患者谵妄危险因素研究[D]. 石家庄:河北医科大学, 2021.
[17] 李雪苹, 王磊, 张淮, 等. Stanford A型主动脉夹层患者术后谵妄风险预测评分模型的构建与效果验证[J]. 中华护理杂志, 2022,57(8):950-957. DOI:10.3761/j.issn.0254-1769.2022.08.009.
[18] 陈顺利, 刘琰, 陈静, 等. 老年腹部手术患者术后亚谵妄综合征预测模型的构建[J]. 中华护理杂志, 2024,59(16):2001-2008. DOI:10.3761/j.issn.0254-1769.2024.16.012.
[19] Bugiani O.Why is delirium more frequent in the elderly?[J]. Neurol Sci, 2021,42(8):3491-3503. DOI:10.1007/s10072-021-05339-3.
[20] Feinkohl I, Janke J, Slooter A, et al.Metabolic syndrome and the risk of postoperative delirium and postoperative cognitive dysfunction: a multi-centre cohort study[J]. Br J Anaesth, 2023,131(2):338-347. DOI:10.1016/j.bja.2023.04.031.
[21] 张莹莹, 张广清, 李佳雨, 等. 基于循证构建ICU亚谵妄综合征早期识别及管理方案[J]. 护理学报, 2022,29(17):7-12. DOI:10.16460/j.issn1008-9969.2022.17.007.
[1] CHEN Yuanxing, GUO Yan, WANG Honghao, LIU Gao. Construction of prediction model for prolonged hospital stay in patients undergoing laparoscopic radical surgery for colon cancer [J]. Journal of Nursing, 2025, 32(7): 70-75.
[2] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[3] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[4] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[5] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[6] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[7] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[8] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[9] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[10] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[11] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[12] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[13] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[14] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[15] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!