以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (1): 37-41.doi: 10.16460/j.issn1008-9969.2024.01.037

Previous Articles     Next Articles

Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years

WANG Wei1, LU Qian2, SONG Yan-ru3, KE Sang-sang1, LIU Chun-lei1   

  1. 1. School of Nursing, Hebei University, Baoding 071000, China;
    2. School of Nursing, Peking University, Beijing 100191, China;
    3. Dept. of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Received:2023-09-25 Online:2024-01-10 Published:2024-02-19

Abstract: Objective To appraise the methodological quality of studies on prediction model published in Chinese nursing core journals in the past five years, and to provide reference for the study of prediction models. Methods The articles on prediction model published in nursing core journals from January 1, 2018 to December 31, 2022 were retrieved. A Measurement Tool to Assess Risk of Bias and Applicability of Prediction Model(PROBAST) was used to evaluate the methodological quality of the prediction model. Results A total of 265 articles were included, and the overall risk of bias was high. The main problems included inappropriate research design, unreported and unused blind methods, insufficient sample size, and incorrect methods for screening predictors. Conclusion The methodological quality of the included predictive models needs to be improved, and the construction process needs to be standardized, thus to provide a more reliable basis for decision-making.

Key words: nursing, prediction model, methodological quality

CLC Number: 

  • R47
[1] 张蕊, 郑黎强, 潘国伟. 疾病发病风险预测模型的应用与建立[J]. 中国卫生统计, 2015,32(4):724-726.
[2] 徐园, 朱丽筠, 王钰, 等. 我国护理学者开展预测模型研究的现状和启示:一项范围综述[J]. 中国护理管理, 2022,22(5):744-749. DOI:10.3969/j.issn.1672-1756.2022.05.021.
[3] Moons KGM, Wolff RF, Riley RD, et al.PROBAST: a tool to assess risk of bias and applicability of prediction model studies:explanation and elaboration[J].Ann Intern Med, 2019,170(1):W1-W33. DOI:10.7326/M18-1377.
[4] Moons KG, De Groot JA, Bouwmeester W, et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med, 2014,11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[5] 陈香萍, 张奕, 庄一渝, 等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744.DOI:10.7507/1672-2531.201910087.
[6] 周慧, 王红梅, 叶群, 等. 神经外科ICU病人呼吸机相关性肺炎风险预测模型的构建[J].护理研究,2022,36(23):4174-4180. DOI:10.12102/j.issn.1009-6493.2022.23.007.
[7] 刘雨安, 杨小文, 李乐之. 机器学习在疾病预测的应用研究进展[J]. 护理学报, 2021,28(7):30-34. DOI:10.16460/j.issn1008-9969.2021.07.030.
[8] 谷鸿秋, 王俊峰, 章仲恒, 等. 临床预测模型:模型的建立[J]. 中国循证心血管医学杂志, 2019,11(1):14-16,23. DOI:10.3969/j.issn.1674-4055.2019.01.04.
[9] De Jong Y, Ramspek CL, Zoccali C, et al.Appraising prediction research: a guide and meta-review on bias and applicability assessment using the prediction model risk of bias assessment tool (PROBAST)[J]. Nephrology (Carlton), 2021,26(12):939-947. DOI:10.1111/nep.13913.
[10] 许健, 张驰, 周东阳, 等. 卒中后抑郁风险列线图预测模型的构建及验证[J]. 护理学杂志, 2022,37(17):5-8,22. DOI:10.3870/j.issn.1001-4152.2022.17.005.
[11] 许汝福. Logistic回归变量筛选及回归方法选择实例分析[J]. 中国循证医学杂志, 2016,16(11):1360-1364. DOI:10.7507/1672-2531.20160205.
[12] 奚丽婧, 郭昭艳, 杨雪珂, 等. LASSO及其拓展方法在回归分析变量筛选中的应用[J]. 中华预防医学杂志, 2023,57(1):107-111. DOI:10.3760/cma.j.cn112150-20220117-00063.
[13] Riley RD, Ensor J, Snell K, et al.Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020,368:m441. DOI:10.1136/bmj.m441.
[14] Riley RD, Snell K, Ensor J, et al.Minimum sample size for developing a multivariable prediction model: Part I- continuous outcomes[J]. Stat Med, 2019,38(7):1262-1275. DOI:10.1002/sim.7993.
[15] Riley RD, Snell KI, Ensor J, et al.Minimum sample size for developing a multivariable prediction model: Part II - binary and time-to-event outcomes[J]. Stat Med, 2019,38(7):1276-1296. DOI:10.1002/sim.7992.
[16] Archer L, Snell K, Ensor J, et al.Minimum sample size for external validation of a clinical prediction model with a continuous outcome[J]. Stat Med, 2021,40(1):133-146. DOI:10.1002/sim.8766.
[17] 谢晓冉, 徐蓉, 张静, 等. 糖尿病足风险预测模型的构建与验证[J]. 护理学杂志, 2022,37(11):9-14. DOI:10.3870/j.issn.1001-4152.2022.11.009.
[18] 曹煜隆, 单娇, 龚志忠,等. 个体预后与诊断预测模型研究报告规范——TRIPOD声明解读[J]. 中国循证医学杂志,2020,20(4):492-496. DOI:10.7507/1672-2531.201912032.
[19] 邓建新, 单路宝, 贺德强, 等. 缺失数据的处理方法及其发展趋势[J]. 统计与决策, 2019,35(23):28-34. DOI:10.13546/j.cnki.tjyjc.2019.23.005.
[20] Hendriksen JM, Geersing GJ, Moons KG, et al.Diagnostic and prognostic prediction models[J]. J Thromb Haemost, 2013,11(Suppl 1):129-141. DOI:10.1111/jth.12262.
[21] 蒋伟, 付阿丹, 杜蕾, 等. 急诊科护理人员护理纠纷后离职的风险预测研究[J]. 中国实用护理杂志, 2018,34(4):296-301. DOI:10.3760/cma.j.issn.1672-7088.2018.04.013.
[22] 谷鸿秋, 周支瑞, 章仲恒, 等. 临床预测模型:基本概念、应用场景及研究思路[J].中国循证心血管医学杂志, 2018,10(12):1454-1456. DOI: 10.3969/j.issn.1674-4055.2018.12.04.
[23] Steyerberg EW, Vickers AJ, Cook NR, et al.Assessing the performance of prediction models: a framework for traditional and novel measures[J]. Epidemiology, 2010,21(1):128-138. DOI:10.1097/EDE.0b013e3181c30fb2.
[24] 王俊峰, 章仲恒, 周支瑞, 等. 临床预测模型:模型的验证[J]. 中国循证心血管医学杂志, 2019, 11(2):141-144. DOI:10.3969/j.issn.1674-4055.2019.02.04.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] LIU Lu, ZHU Yu, CAO Yi, ZHANG Hua, PENG Yu-na. Effect of target temperature management strategy on intraoperative temperature management in patients undergoing hyperthermic intraperitoneal chemotherapy [J]. Journal of Nursing, 2025, 32(4): 59-63.
[3] GONG Zu-hua, SUN Li, TAN Xuan, ZHANG Yue, SHI Dan, CHENG Juan-juan. Effect of basic sign collection-comparison-recognition model for occult change after hepatobiliary surgery [J]. Journal of Nursing, 2025, 32(4): 74-78.
[4] LI Miao-miao, XIONG Li-juan, QI Lei, LI Min, XIANG Yu-ting. Application of diagnosis-related group based on Ridit analysis and rank sum ratio method in nursing performance management [J]. Journal of Nursing, 2025, 32(3): 22-26.
[5] LI Ruo-Yu, LIU Xin, LIN Ping, CHEN Dan, LIN Hua. Best evidence summary for medication safety management for discharged patients [J]. Journal of Nursing, 2025, 32(3): 50-55.
[6] YANG Xiao-juan, MAO Xiao-rong, WANG Jing, JIANG Hua, LI Rong, FAN Yu, WEN Qing, LI Lin-zhang, CHEN Xiao-rong. Best evidence summary for early enteral nutrition management in adults with severe burns [J]. Journal of Nursing, 2025, 32(3): 56-61.
[7] ZHU Tian-shun, ZHU Ke-ke, XUE Hui-yuan, JIAO Cong-cong, WEI Chang-hui, WANG He. Application of message framing theory in health management: a scoping review [J]. Journal of Nursing, 2025, 32(2): 44-49.
[8] LIU Shuo-yi, XIONG Li-juan, LI Ling, WANG Yu-mei, HE Jia, LI Xin, YUAN Shi-lei, GUO Xue-qin, WANG Yang-jing, ZHANG Hui-juan. Quality evaluation and content analysis of clinical practice guidelines for prevention and management of frailty in elderly hospitalized patients [J]. Journal of Nursing, 2025, 32(2): 50-55.
[9] SUN Juan, LI Ya-li, MA An-na, WANG Hua, ZHANG Hui-min. Experience of nursing postgraduates on ideological and political teaching in community nursing practice: a qualitative study [J]. Journal of Nursing, 2025, 32(1): 19-23.
[10] LI Ge-ge, WANG Wan-er, PU Jiang-feng, XIE Zhang-hao, YANG Niu, HUANG Hui-gen. Evaluation of allocation of nursing human resource in Guangdong Province based on entropy weight TOPSIS combined with RSR method [J]. Journal of Nursing, 2025, 32(1): 29-33.
[11] HE Fang, WEN Xiu-lan, LIN Yan, SUN Li, WANG Xiao-jie, YU Xin, LIU Hui, GUO Xiao-ping, ZHOU Yan. Establishment and practice of online neonatal nursing consultation clinic based on mobile healthcare [J]. Journal of Nursing, 2024, 31(9): 20-23.
[12] CHEN Jie, MENG Qing-tong, LIU Jing-jin, WU Yan-ni. Development of guideline-based exercise rehabilitation handbook for patients with chronic heart failure [J]. Journal of Nursing, 2024, 31(9): 36-41.
[13] FU Lu-lu, XIE Yi-xuan, WANG Yue, WEI Wei, ZHANG Chuan-ying, ZHU Yu. Evidence summary for auditory stimulation intervention for procedural pain in neonates [J]. Journal of Nursing, 2024, 31(9): 42-47.
[14] CHEN Jie, LAI Jing, WANG Cheng-yue, XU Liang-ying, YAN Juan, LUO Xue. Construction of humanistic care quality evaluation index system of ICU nursing based on Three-dimensional Quality Structure Theory [J]. Journal of Nursing, 2024, 31(9): 54-59.
[15] MU Xiao-ying, ZHOU Fen, FAN Ying-yi, YUAN Ting, WANG Yu-xi, LV Yun-peng, RONG Hong-guo. Patients' preferences for internet-based sharing nursing service of breast massage based on discrete choice experiment [J]. Journal of Nursing, 2024, 31(9): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!