以质量求发展,以服务铸品牌

Journal of Nursing ›› 2021, Vol. 28 ›› Issue (22): 12-17.doi: 10.16460/j.issn1008-9969.2021.22.012

Previous Articles     Next Articles

Establishment and Verification of Diabetic Ketoacidosis Risk Prediction Model for Type 2 Diabetic Patients

LI Xue-jia1, YANG Kai-qing2   

  1. 1. School of Nursing, Dali University, Dali 671000, China;
    2. Labor Union, Dali Bai Autonomous Prefecture People's Hospital,Dali 671000, China
  • Received:2021-06-25 Online:2021-11-25 Published:2021-12-13

Abstract: Objective To establish and verify the risk prediction model of diabetic ketoacidosis, to provide reference for the early identification, prevention and control of the disease. Methods A total of 943 patients with type 2 diabetes hospitalized in Dali People's Hospital from January 2019 to December 2020 were selected by convenience sampling method. Logistic regression analysis was used to screen out independent risk factors to establish a risk prediction model. A total of 393 patients with type 2 diabetes hospitalized in the First Affiliated Hospital of Dali University from March 2020 to December 2020 were selected to verify the model. Results Four factors of acute infection(OR=8.210, stress events(OR=129.267), random venous blood glucose(OR=1.986), and HbA1c(OR=1.421)were included to construct a risk prediction model. The area under the ROC curve of the modeling group was 0.994; the maximum value of Youden index 0.929; the sensitivity 0.954; the specificity 0.975, and Hosmer-Lemeshow test P=0.975. The test results of the validation group indicated that the area under the ROC curve was 0.901 and the maximum value of Youden index, the sensitivity and the specificity was 0.754, 0.889, and 0.865 respectively. Conclusion Acute infection, stress event, random venous blood glucose, and glycosylatedhemoglobin are independent risk factors for type 2 diabetic ketoacid, and the prediction model constructed in this study shows good prediction efficiency.

Key words: Type 2 diabetes mellitus, ketoacidosis, risk factor, prediction model

CLC Number: 

  • R473.58
[1] 谭晓娟,王慧,张瑞.新诊断合并糖尿病酮症酸中毒的1型糖尿病和2型糖尿病患者临床特征比较[J]. 中国医药,2020,15(2):235-238.DOI:10.3760/j.issn.1673-4777.2020.02.018.
[2] Vellanki P, Umpierrez GE.Diabetic Ketoacidosis: a Common Debut of Diabetes Among Africanamericans with Type 2 Diabetes[J]. Endocrine Practice, 2017, 23(8):971-978. DOI:10.4158/EP161679.RA.
[3] Sato Y, Morita K, Okada A, et al.Factors Affecting In-Hospital Mortality of Diabetic Ketoacidosis Patients: A Retrospective Cohort Study[J]. Diabetes Res Clin Pract,2021,171:108588. DOI:10.1016/j.diabr es.2020.108.
[4] 邱俊霖,苏会璇,陈文,等.糖尿病酮症酸中毒的流行病学调查[J].广西医科大学学报,2017,34(9):1394-1397. DOI:10.16190/j.cnki.45-1211/r.2017.09.041.
[5] Wang ZH, Kihl-Selstam E, Eriksson JW.Ketoacidosis Occurs in Both Type 1 and Type 2 Diabetes-a Population-based Study from Northern Sweden[J]. Diabet Med, 2008, 25(7):867-870. DOI:10.1111/j.1464-5491.2008.02461.x
[6] 戴庆,何军,张凡,等.1型糖尿病与2型糖尿病患者并发酮症酸中毒的临床特点分析[J].现代医药卫生,2017,33(22):3440-3441. DOI:10.3969/j.issn.1009-5519.2017.22.023.
[7] Seth P, Kaur H, Kaur M. Clinical Profile of Diabetic Ketoacidosis: A Prospective Study in a Tertiary Care Hospital [J]. J Clin Diagn Res, 2015,9(6):OC01-OC04. DOI:10.7860/JCDR/2015/8586.5995.
[8] Wu XY, She DM, Wang F, et al.Clinical Profiles, Outcomes and Risk Factors Among Type 2 Diabetic Inpatients with Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State: A Hospital-based Analysis Over a 6-Year Period[J]. BMC Endocr Disord, 2020, 20(1):182.DOI:10.1186/s12902-020-00659-5.
[9] Shahid W, Khan F, Makda A, et al.Diabetic Ketoacidosis: Clinical Characteristics and Precipitating Factors[J]. Cureus, 2020, 12(10):e10792-e10792. DOI:10.7759/cureus.10792.
[10] 陈曹杰,徐驰.糖尿病酮症酸中毒病死率的相关因素分析 [J]. 中华内分泌外科杂志, 2017, 11(6):467-470. DOI:10.3760/cma.j.issn.1674-6090.2017.06.007.
[11] Wolfsdorf J, Glaser N, Sperling MA, et al.Diabetic Ketoacidosis in Infants, Children, and Adolescents: A Consensus Statement from the American Diabetes Association[J]. Diabetes Care, 2006,29(5):1150-1159. DOI:10.2337/dc06-9909.
[12] 贾香连. 压力应激导致血糖代谢紊乱的中枢神经环路机制[D]. 深圳:中国科学院大学, 2019.DOI:10.27822/d.cnki.gszxj.2019.000006.
[13] Goldstein DE,Little RR,Lorenz RA, et al.Tests of Glycemia in Diabetes[J]. Diabetes Care, 2004, 27(7):1761-1773. DOI:10.2337/diacare.27.7.1761.
[14] 倪平,袁丽.糖尿病足溃疡复发的影响因素研究进展[J].护理学报,2017,24(9):35-38.DOI:10.16460/j.issn1008-9969.2017.09.035.
[15] Casadei G, Filippini M, Brognara L. Glycated Hemoglobin (HbA1c) as a Biomarker for Diabetic Foot Peripheral Neuropathy[J]. Diseases (Basel, Switzerland), 2021, 9(1):16.DOI:10.3390/diseases9010016.
[16] 顾经宇,唐伟,武晓泓,等. 糖尿病患者发生酮体蓄积的预测[J]. 江苏医药, 2011, 37(9):1053-1055. DOI:10.19460/j.cnki.0253-3685.2011.09.023.
[17] 周吉,顾涛,庄丽英,等.2型糖尿病患者血β-羟丁酸水平与空腹血糖及糖化血红蛋白的关系[J]. 糖尿病新世界,2016,19(11):66-67. DOI:10.16658/j.cnki.1672-4062.2016.11.066.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72.
[4] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[5] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[6] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[7] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[8] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[9] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[10] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[11] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[12] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[13] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[14] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[15] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!