以质量求发展,以服务铸品牌

Journal of Nursing ›› 2022, Vol. 29 ›› Issue (3): 72-78.doi: 10.16460/j.issn1008-9969.2022.03.072

Previous Articles    

Construction and Validation of Risk Prediction Model for Postoperative Gastrointestinal Dysfunction in Patients with Gynecological Malignant Tumor

ZHAO Xiao-rui1, LONG Yun2b, CHEN Si-qi2c, BAI Jie2a, XIAO Xiao2a, ZHU She-ning2a   

  1. 1. Shanxi University of Traditional Chinese Medicine, Jinzhong 030619,China;
    2a. Dept. of Nursing Administration; 2b. Dept. of Gynecology; 2c. Maternal and Child Medical Institute, Shenzhen Maternity & Child Healthcare Hospital , Shenzhen 518028, China
  • Received:2021-06-21 Published:2022-03-04

Abstract: Objective To To establish a risk prediction model for postoperative gastrointestinal dysfunction in patients with gynecological malignant tumor, and to verify the prediction effect of the model. Methods A total of 281 patients with malignant tumor who underwent radical surgery in Shenzhen Maternity and Child Healthcare Hospital from January 1, 2015 to December 31, 2020 were selected as the object and they were divided into two groups: patients with postoperative gastrointestinal dysfunction (n=109) and patients without postoperative gastrointestinal dysfunction (n=172). Variables were screened by the Lasso model, and the variables screened out by the Lasso model were incorporated into the logistics regression model to construct the risk prediction model of gastrointestinal dysfunction after gynecological malignant tumor surgery. The area under the working curve (ROC) of the model was calculated to test the differentiation of the model by using the ten-fold cross-validation method. The goodness of fit and prediction effect of the models were tested respectively. Results The incidence of postoperative gastrointestinal dysfunction was 38.8%. The influencing factors were BMI (OR=0.594,95%CI:0.381~0.907), serum sodium level (OR=0.915,95%CI:0.822~1.015), omentum greater surgical resection (OR=8.388,95%CI:1.741~6.569), pelvic lymph node dissection (OR=4.148,95%CI:1.368~1.665),anesthesia time (OR=1.528,95%CI:0.910~2.612) and uric acid alkalinity(OR=0.773,95%CI:0.579~1.015). The AUC under the receiver operating characteristic curve was 0.70 (95%CI:0.63~0.75,P<0.001); the sensitivity 69%, and the specificity 60%. Conclusion The model established in the study is relatively reliable in predicting the risk of postoperative gastrointestinal dysfunction in patients with gynecological malignant tumor, and it is helpful for medical personnel to screen high-risk patients and develop targeted nursing interventions.

Key words: gynecology, malignant neoplasm, risk factor, gastrointestinal dysfunction, prediction model

CLC Number: 

  • R473.71
[1] 谈善军,吴国豪,虞文魁,等.术后胃肠功能障碍的病因研究进展[J].中华胃肠外科杂志, 2016, 19(3):351-355.DOI:10.3760/cma.j.issn.1671-0274.2016.03.029.
[2] 许亚莉. 咀嚼口香糖联合早期半流质饮食在腹腔镜胆囊切除术后胃肠功能恢复中的应用[D]. 苏州大学, 2018. DOI:CNKI:CDMD:2.1018.143662.
[3] 杨杏丽.分类学习算法的性能度量指标综述[J/OL].计算机科学:1-17[2021-04-26]. http://kns.cnki.net/kcms/detail/50.1075.TP.20210421.1351.029.html.DOI:10.11896/jsjkx.200900216.
[4] Atasever AG, Ozcan PE, Kamber Kasali TA, et al.The Frequency, Risk Factors, and Complications of Gastrointestinal Dysfunction During Enteral Nutrition in Critically Ill Patients[J].Ther Clin Risk Manag,2018,14:385.DOI:10.2147/TCRM.S158492.
[5] Doorly MG, Senagore AJ.Pathogenesis and Economic Consequences of Postoperative Ileus[J]. Surg Clin North AM, 2012, 92(2):259-272.
[6] Husslein H, Franz M, Gutschi M, et al.Postoperative Gum Chewing after Gynecologic Laparoscopic Surgery: A Randomized Controlled Trial[J]. Obstet Gunecol, 2013,122(1): 85-90.
[7] 李冠亚. 袖状胃切除减重手术调节大脑功能-胃肠激素/菌群机制的研究[D].西安:西安电子科技大学, 2020.
[8] 袁维维,王鸿超,陈宇涛,等. 不同身体质量指数人群肠道菌群结构及共存网络解析[J]. 微生物学通报, 2021, 48(10): 3776-3790. DOI:10.13344/j.microbiol.china.201183.
[9] 张鹏横. 从木郁克土探讨围绝经期肝郁证大鼠胃肠功能紊乱的机制[D].福州:福建中医药大学,2020.DOI:10.27021/d.cnki.gfjzc.2020.000336.
[10] Yasukawa Z, Inoue R, Ozeki M, et al.Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial[J].Nutrients,2019,11(9):2170.DOI:10.3390/nu11092170.
[11] 申振亚,周发春,杨洁.围手术期水电解质紊乱临床诊治[J].中国实用外科杂志, 2014, 34(2):145-149.
[12] Seifter JL. Body Fluid Compartments, Cell Membrane Ion Transport, Electrolyte Concentrations,and Acid-Base Balance[J]. Semin Nephrol,2019,39(4):368-379.DOI:10.1016/j.semnephrol.2019.04.006.
[13] 李静, 孙萌, 李艳京, 等. 13例早期乳腺癌患者全腔镜乳房皮下腺体切除术联合带蒂大网膜一期乳房重建术的护理[J]. 护理学报, 2018, 25(16):47-49. DOI:10.16460/j.issn1008-9969.2018.16.047.
[14] Li J, Sun F, Guo Y, et al.High-salt Diet Gets Involved in Gastrointestinal Diseases through the Reshaping of Gastroenterological Milieu[J]. Digestion, 2019, 99(4):267-274. DOI:10.1159/000493096.
[15] 马嫦娥,陈静,陈月英,等.加速康复外科术前肠道准备对电解质及血糖的影响[J].中华现代护理杂志,2010(3):296-298.
[16] 张明凯,彭志浩,黄海,等.腹腔镜胃癌根治术中应用加速康复外科的Meta分析[J].腹腔镜外科杂志,2021,26(8):567-575.DOI:10.13499/j.cnki.fqjwkzz.2021.08.567.
[17] 刘美玲,龚桂芳,肖玉梅,等. 日间病房妇科腹腔镜手术患者快速康复循证护理实践[J]. 护理学报, 2019, 26(15): 31-35. DOI:10.16460/j.issn1008-9969.2019.15.031.
[18] 张玉琴,李元海,夏晓琼,等.围手术期帕瑞昔布钠联合右美托咪定对老年患者腹腔镜胃癌手术术后胃肠功能的影响[J].国际麻醉学与复苏杂志, 2020(1):48-52.DOI:10.3760/cma.j.issn.1673-4378.2020.01.011.
[19] 苏语涵,蒋雪梅.原发性大网膜肿瘤的诊断及治疗[J].中国现代普通外科进展,2019,22(12):998-1002.DOI:10.3969/j.issn.1009-9905.2019.12.023.
[20] 康文哲,邵欣欣,田艳涛.术后早期炎性肠梗阻研究进展[J].世界华人消化杂志, 2018, 26(2):105-109.DOI:10.11569/wcjd.v26.i2.105.
[21] Ai W, Liang Z, Li F, et al.Internal Hernia Beneath Superior Vesical Artery after Pelvic Lymphadenectomy for Cervical Cancer:A Aase Report and Literature Review[J]. BMC Surg, 2020, 20(1):1-4. DOI:10.1186/s12893-020-00985-4.
[22] 刘洁,李俊莹,付义刚.床旁早期专项锻炼结合加速康复外科护理对子宫内膜癌术后患者胃肠功能恢复的影响[J].中国肿瘤临床与康复,2020,27(12):1451-1454.DOI:10.13455/j.cnki.cjcor.2020.12.11.
[23] 胡月霞. 胸段硬膜外麻醉联合全麻对腔镜食管癌根治术患者胃肠功能及术后恢复的影响[D].安徽医科大学, 2019. DOI:CNKI:SUN:SDYY.0.2019-02-017.
[24] 曾文强, 张在斌, 吕昆阳, 等. 右美托咪定辅助静脉麻醉对结肠癌患者术后胃肠动力恢复的影响[J]. 中国医院药志, 2021, 41(1):81-84.DOI:10.13286/j.1001-5213.2021.01.16.
[25] 申丽珍. 干预护理在妇科全身麻醉患者术后复苏期的应用[J].中国药物与临床,2021,21(10):1800-1801.DOI:10. 11655/ zgywylc2021. 10. 075.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72.
[4] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[5] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[6] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[7] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[8] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[9] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[10] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[11] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[12] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[13] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[14] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[15] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!