以质量求发展,以服务铸品牌

Journal of Nursing ›› 2019, Vol. 26 ›› Issue (11): 55-59.doi: 10.16460/j.issn1008-9969.2019.11.055

Previous Articles     Next Articles

Establishment of Nomogram Model for Prediction of Pressure Injury Risk in ICU Patients

YAO Xiu-ying1, GEN Li1, ZHANG Li-xiang1, HUANG Lei1, CHEN Xia1, Amanda2   

  1. 1. ICU, South District of the First Affiliated Hospital, University of Science and Technology of China, Hefei 230036, China;
    2. College of Computer Science and Technology, University of Science and Technology of China, Hefei 230036, China
  • Received:2019-03-01 Published:2020-07-08

Abstract: Objective To analyze the risk factors of pressure injury (PI) in ICU patients and establish a nomogram model for predicting the risk of PI. Methods A total of 341 patients admitted to ICU from January 2017 to December 2017 who met the inclusion criteria were selected as research subjects. According to the occurrence of pressure sores in patients, the clinical data of patients during hospitalization were retrospectively collected by a self-designed questionnaire. Logistic regression analysis was used to determine independent risk factors of PI. Nomogram model for predicting the occurrence of PI was established. H-L deviation test and ROC curve were used to evaluate the deviation and discrimination of the prediction model respectively. Results The incidence of PI in this study was 16.4%. Multivariate logistic regression analysis showed that stroke, diabetes, lactic acid, invasive mechanical ventilation, gender, hemoglobin and serum albumin were independent influence factors for the occurrence of PI(all P<0.05). The established nomogram model had good accuracy (H-L test: χ2=4.561, P=0.683) and discrimination (AUC=0.886, 95%CI:0.749~0.970). Conclusion This study integrates 7 independent influence factors of PI, and the corresponding nomogram prediction model has good predictive value, which is helpful for medical personnel to adopt targeted prevention strategies, thus to effectively prevent the occurrence of PI in ICU patients.

Key words: severe patient, pressure injury, prediction model, the column chart

CLC Number: 

  • R473
[1] 褚万立,郝岱峰. 美国国家压疮咨询委员会2016年压力性损伤的定义和分期解读[J]. 中华损伤与修复杂志(电子版), 2018,13(1):64-68.DOI:10.3877/cma.j.issn.1673-9450.2018.01.014.
[2] 曾文君. 早期预警干预对神经外科患者压疮发生情况的影响[J].中国现代医学杂志, 2015,25(6):101-104.DOI:10.3969/j.issn.1005-8982.2015.06.023.
[3] Rn E S M S, Theo Dassen R N, Halfens R J G. Pressure Ulcer Prevention in Intensive Care Patients: Guidelines and Practice[J]. J Eval Clin Pract, 2010, 15(2):370-374. DOI: 10.1111/j.1365-2753.2008.01018.x.
[4] Terekeci H, Kucukardali Y, Top C, et al.Risk Assessment Study of the Pressure Ulcers in Intensive Care Unit Patients[J]. Eur J Intern Med,2009, 20(4):394-397.DOI:10.1016/j.ejim.2008.11.001.
[5] 杨小辉,赵媛媛,钮美娥. ICU医疗器械相关压力性损伤的研究现状[J]. 护理学报, 2017,24(13):49-53.DOI:10.16460/j.issn1008-9969.2017.13.049.
[6] 霍婉君,刘荣敏,冯素云,等. 2007-2016年我国压疮发生危险因素研究的文献计量分析[J]. 护理学报, 2017,24(20):14-16.DOI:10.16460/j.issn1008-9969.2017.20.014.
[7] 李凤玲,吴晓燕,张丽娟. 预测骨折手术患者并发术中压疮风险的列线图模型的建立[J]. 中国实用护理杂志, 2018,34(4):279-283.DOI:10.3760/cma.j.issn.1672-7088.2018.04.009.
[8] 赵丽娟,王富艳,胡俊霞. 预测腹部手术切口感染风险的列线图模型的建立[J].中华现代护理杂志,2018,24(14):1633-1638.DOI:10.3760/cma.j.issn.1674-2907.2018.14.007.
[9] 王娇,吴玉梅. 建立子宫内膜非典型增生风险预测列线图[J].中国妇产科临床杂志, 2014,15(3):237-240.DOI:10.13390/j.issn.1672-1861.2014.03.014.
[10] 霍婉君,冯素云,曾繁端,等. ICU患者压疮危险因素的Meta分析[J]. 齐鲁护理杂志, 2018,24(24):35-39.DOI:10.3969/j.issn.1006-7256.2018.24.012.
[11] 邓小红,王乔凤,李明珂,等. ICU住院患者发生院内获得性压疮的危险因素分析[J]. 中国护理管理, 2016,16(6):836-839.DOI:10.3969/j.issn.1672-1756.2016.06.028.
[12] Edsberg L E, Black J M, Goldberg M, et al.Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System[J]. J Wound Ostomy Continence Nurs, 2017, 43(6):585.
[13] 宋文静,管晓萍,李蓉,等. 成人开颅手术压疮的风险因素研究[J]. 中国全科医学, 2015,18(11):1270-1273.DOI:10.3969/j.issn.1007-9572.2015.11.010.
[14] 蒲丽辉,胡秀英,刘祚燕. 老年患者压疮风险现状调查与影响因素分析[J]. 中国护理管理, 2015,15(5):540-543.DOI:10.3969/j.issn.1672-1756.2015.05.009.
[15] 郭静,李化龙,张大庆. ICU重症伴休克患者动脉血乳酸水平监测的临床意义[J].中国医学创新,2015,12(22):151-153.DOI:10.3969/j.issn.1674-4985.2015.22.061.
[16] 徐萍,唐冰,翟怀香,等. 床头抬高角度对机械通气重症患者呼吸机相关性肺炎及压疮影响的Meta分析[J]. 中华现代护理杂志,2017,23(23):3002.DOI:10.3760/cma.j.issn.1674-2907.2017.23.014.
[17] 中华医学会重症医学分会.机械通气临床应用指南(2006)[J]. 中国危重病急救医学, 2007, 19(2):65-72.DOI:10.3760/j.issn:1003-0603.2007.02.002.
[18] Shahin E S, Dassen T, Halfens R J.Incidence, Prevention and Treatment of Pressure Ulcers in Intensive Care Patients: A Longitudinal Study[J]. Int J Nurs Stud, 2009,46(4):413-421.DOI:10.1016/j.ijnurstu.2008.02.011.
[19] 李杨,潘莹莹,姜丽萍,等. 压疮及防治的研究进展[J]. 中华现代护理杂志, 2015,21(9):1107-1110.DOI:10.3760/j.issn.1674-2907.2015.09.043.
[20] Posthauer M E, Banks M, Dorner B, et al.The Role of Nutrition for Pressure Ulcer Management: National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, and Pan Pacific Pressure Injury Alliance White Paper[J].Advances in Skin & Wound Care, 2015, 28(4):189-190.DOI:10.1097/01.ASW.0000461911.31139.62.
[21] Anthony D, Rafter L, Reynolds T, et al.An Evaluation of Serum Albumin and the Sub-scores of the Waterlow Score in Pressure Ulcer Risk Assessment[J]. J Tissue Viability, 2011, 20(3):89-99.DOI: 10.1016/j.jtv.2011.04.001.
[22] Keelaghan E, Margolis D, Zhan M, et al.Prevalence of Pressure Ulcers on Hospital Admission among Nursing Home Residents Transferred to the Hospital[J].Wound Repair Regen,2010,16(3):331-336.DOI:10.1111/j.1524-475X.2008.00373.x.
[23] 关欣,王蕾,邵欣. 重症医学科1056例患者中压疮发生情况的调查研究[J]. 中华护理杂志,2014,49(7):840-843.DOI:10.3761/j.issn.0254-1769.2014.07.019.
[24] 蒋琪霞,刘洁. 64例医院内获得性压疮的原因分析及对策[J]. 中华现代护理杂志, 2014,20(11):1244-1247.DOI:10.3760/j.issn.1674-2907.2014.11.002.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[4] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[5] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[6] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[7] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[8] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[9] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[10] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[11] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[12] LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21.
[13] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[14] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
[15] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!