以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (23): 44-49.doi: 10.16460/j.issn1008-9969.2023.23.044

Previous Articles     Next Articles

Machine learning-based a risk predictive model for deep vein thrombosis in hospitalized patients: a systematic review

YANG Nan-nan1, JIANG Hui-ping2, SHI Ting-qi1,2   

  1. 1. Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China;
    2. Dept of Nursing Administration,Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
  • Received:2023-07-24 Online:2023-12-10 Published:2024-01-09

Abstract: Objective To systematically evaluate the risk prediction model for deep vein thrombosis in hospitalized patients based on machine learning. Methods We conducted literature research in PubMed, Embase, CHINHAL, Cochrane Library, Web of Science, CNKI, and Wanfang databases for literature on risk prediction models for deep vein thrombosis in hospitalized patients constructed by machine learning. The search period spanned from the inception to March 2023. Two researchers completed literature screening and data extraction independently, and used predictive models to construct a research data extraction and quality evaluation checklist (CHARMS) to evaluate the quality of the included literature and screened high-quality literature for discussion. Results Totally 11 high-quality studies were collected, including 28 machine learning models, with an area under the ROC curve ranging from 0.710 to 0.976. Laboratory indicators such as age, VTE history, length of hospital stay, medication history, and D-dimer were are the main predictive factors. Conclusions Risk prediction models constructed using machine learning can accurately identify the risk of DVT events in hospitalized patients, and its predictive performance is superior to traditional risk prediction models. The available literature on the topic exhibits a low overall risk of bias, however, the applicability level of the prediction model is considered average.

Key words: Deep vein thrombosis, DVT, machine learning, nursing, predictive model, systematic review

CLC Number: 

  • R471
[1] 中华医学会外科学分会血管外科学组.深静脉血栓形成的诊断和治疗指南(第三版)[J].中华普通外科杂志, 2017, 32(9):807-812. DOI:10.3760/cma.j.issn.1007-631X.2017.09. 032.
[2] 邵翔,翟振国,王辰.医院相关性静脉血栓栓塞症[J].中华医学杂志,2018,98(46):3792-3794.DOI:10.3760/cma.j.issn.0376-2491.2018.46.014.
[3] Valerio L, Barco S, Jankowski M, et al.Quality of life 3 and 12 months following acute pulmonary embolism: analysis from a prospective multicenter cohort study[J]. Chest, 2021,9(6):2428-2438. DOI:10.1016/j.chest.2021.01.071.
[4] 张煜,张春艳,金玉,等.内科危重症患者深静脉血栓预防审查指标的制定及障碍因素分析[J].护理学报, 2020,27(4):37-41.DOI:10.16460/j.issn1008-9969.2020.04.037.
[5] Wang P, Wang Y, Yuan Z, et al, Venous thromboembolism risk assessment of surgical patients in Southwest China using real-world data: establishment and evaluation of an improved venous thromboembolism risk model[J]. BMC Med Inform Decis Mak, 2022,22(1):59.DOI:10.1186/s12911-022-01795-9.
[6] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J]. 护理学报,2021, 28(7):30-34.DOI:10.16460/j.issn1008-9969.2021.07.030.
[7] 王贝伦. 机器学习[M].南京:南京东南大学出版社, 2021:355.
[8] 王晶,李玲利,赵春林,等.机器学习在构建护理风险预测模型中的研究进展[J].护士进修杂志,2022, 37(23):2167-2171.DOI:10.16821/j.cnki.hsjx.2022.23.011.
[9] Moher D, Liberati A, Tetzlaff J, et al.Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA statement[J]. PloS Med, 2009,6(7):e1000097. DOI:10. 1371/journal.pmed.1000097.
[10] Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med, 2014, 11(10):e1001744. DOI:10.1371/journal.pmed.1001744.
[11] 徐泽,张贤祚,张林林,等.全膝关节置换术后深静脉血栓预测模型的建立[J].中国矫形外科杂志,2022,30(23):2123-2128.DOI:10.3977/j.issn.1005-8478.2022.23.03.
[12] 刘佳丽,冯自波,谢燕妮,等.极限梯度提升算法风险预测模型在全膝关节置换术后深静脉血栓中的预测性能[J].血管与腔内血管外科杂志,2022, 8(5):563-567;586.DOI:10.19418/j.cnki.issn2096-0646.2022.05.11.
[13] Wang X, Xi H, Geng X, et al.Artificial intelligence-based prediction of lower extremity deep vein thrombosis risk after knee/hip arthroplasty[J]. Clin Appl Thromb Hemost, 2023(29):10760296221139263.DOI:10.1177/10760296221139263.
[14] Shohat N, Ludwick L, Sherman MB, et al.Using machine learning to predict venous thromboembolism and major bleeding events following total joint arthroplasty[J]. Sci Rep, 2023,13(1):2197.DOI:10.1038/s41598-022-26032-1.
[15] Wang KY, Ikwuezunma I, Puvanesarajah V, et al.Using predictive modeling and supervised machine learning to identify patients at risk for venous thromboembolism following posterior lumbar fusion[J]. Global Spine J,2023,13(4):1097-1103. DOI:10.1177/21925682211019361.
[16] Nudel J, Bishara AM, de Geus SWL, et al. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery:an analysis of the MBSAQIP database[J]. Surg Endosc,2021,35(1):182-191.DOI:10.1007/s00464-020-07378-x.
[17] He L, Luo L, Hou X, et al.Predicting venous thromboembolism in hospitalized trauma patients: a combination of the Caprini score and data-driven machine learning model[J]. BMC Emerg Med,2021,21(1):60.DOI:10.1186/s12873-021-00447-x.
[18] Liu H, Yuan H, Wang Y, et al.Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients[J]. Sci Rep, 2021,11(1):12868. DOI:10.1038/s41598-021-92287-9.
[19] Ryan L, Mataraso S, Siefkas A, et al.A machine learning approach to predict deep venous thrombosis among hospitalized patients[J]. Clin Appl Thromb Hemost, 2021(27):1076029621991185. DOI:10.1177/1076029621991185.
[20] Jin S, Qin D, Liang BS, et al.Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables[J]. Int J Med Inform,2022(161):104733. DOI:10.1016/j.ijmedinf.2022.104733.
[21] Lei H, Zhang M, Wu Z, et al, Development and validation of a risk prediction model for venous thromboembolism in lung cancer patients using machine learning[J]. Front Cardiovasc Med,2022(9):845210. DOI:10.3389/fcvm.2022.845210.
[22] Meng L, Wei T, Fan R, et al, Development and validation of a machine learning model to predict venous thromboembolism among hospitalized cancer patients[J]. Asia Pac J Oncol Nurs, 2022,9(12):100128. DOI:10.1016/j.apjon.2022.100128.
[23] 梁菲,王瑜,武海英.妊娠期深静脉血栓的临床特点、危险因素分析及预测模型构建[J].现代妇产科进展,2022,31(1):50-53.DOI:10.13283/j.cnki.xdfckjz.2022.01.008.
[24] Andaur Navarro CL, Damen JAA, van Smeden M, et al, Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models[J]. J Clin Epidemiol, 2023(154):8-22. DOI:10.1016/j.jclinepi.2022.11.015.
[25] Hayssen H, Cires-Drouet R, Englum B, et al, Systematic review of venous thromboembolism risk categories derived from Caprini score[J]. J Vasc Surg Venous Lymphat Disord, 2022,10(6):1401-1409.e7. DOI:10.1016/j.jvsv.2022.05.003.
[26] 旷小羿,侯惠如.基于电子病历数据的风险预测模型在临床护理中的应用现状[J].护理学报,2020,27(16):21-24.DOI:10.16460/j.issn1008-9969.2020.16.021.
[27] 李芸,朱剑清,王惠英,等.基于电子病历的静脉血栓栓塞症风险评估和防控[J].中国病案,2017,18(9):49-51.
[28] Lu Y, Forlenza E, Cohn MR, et al, Machine learning can reliably identify patients at risk of overnight hospital admission following anterior cruciate ligament reconstruction[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(9):2958-2966. DOI:10.1007/s00167-020-06321-w.
[29] Kumar V, Roche C, Overman S, et al.Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set[J].J Shoulder Elbow Surg, 2021,30(5):e225-e236. DOI:10.1016/j.jse.2020.07.042.
[30] 张舒雯,何晖,闫寒冰,等.静脉血栓栓塞症风险评估模型在临床实践中的研究进展[J].中国医药导报,2023,20(7):63-67.DOI:10.20047/j.issn1673-7210.2023.07.13.
[31] 黄光成,周良,石建伟,等.机器学习算法在疾病风险预测中的应用与比较[J].中国卫生资源,2020, 23(4):432-436.DOI:10.13688/j.cnki.chr.2020.19608.
[1] LIU Lu, ZHU Yu, CAO Yi, ZHANG Hua, PENG Yu-na. Effect of target temperature management strategy on intraoperative temperature management in patients undergoing hyperthermic intraperitoneal chemotherapy [J]. Journal of Nursing, 2025, 32(4): 59-63.
[2] GONG Zu-hua, SUN Li, TAN Xuan, ZHANG Yue, SHI Dan, CHENG Juan-juan. Effect of basic sign collection-comparison-recognition model for occult change after hepatobiliary surgery [J]. Journal of Nursing, 2025, 32(4): 74-78.
[3] LI Miao-miao, XIONG Li-juan, QI Lei, LI Min, XIANG Yu-ting. Application of diagnosis-related group based on Ridit analysis and rank sum ratio method in nursing performance management [J]. Journal of Nursing, 2025, 32(3): 22-26.
[4] LI Ruo-Yu, LIU Xin, LIN Ping, CHEN Dan, LIN Hua. Best evidence summary for medication safety management for discharged patients [J]. Journal of Nursing, 2025, 32(3): 50-55.
[5] YANG Xiao-juan, MAO Xiao-rong, WANG Jing, JIANG Hua, LI Rong, FAN Yu, WEN Qing, LI Lin-zhang, CHEN Xiao-rong. Best evidence summary for early enteral nutrition management in adults with severe burns [J]. Journal of Nursing, 2025, 32(3): 56-61.
[6] ZHU Tian-shun, ZHU Ke-ke, XUE Hui-yuan, JIAO Cong-cong, WEI Chang-hui, WANG He. Application of message framing theory in health management: a scoping review [J]. Journal of Nursing, 2025, 32(2): 44-49.
[7] LIU Shuo-yi, XIONG Li-juan, LI Ling, WANG Yu-mei, HE Jia, LI Xin, YUAN Shi-lei, GUO Xue-qin, WANG Yang-jing, ZHANG Hui-juan. Quality evaluation and content analysis of clinical practice guidelines for prevention and management of frailty in elderly hospitalized patients [J]. Journal of Nursing, 2025, 32(2): 50-55.
[8] SUN Juan, LI Ya-li, MA An-na, WANG Hua, ZHANG Hui-min. Experience of nursing postgraduates on ideological and political teaching in community nursing practice: a qualitative study [J]. Journal of Nursing, 2025, 32(1): 19-23.
[9] LI Ge-ge, WANG Wan-er, PU Jiang-feng, XIE Zhang-hao, YANG Niu, HUANG Hui-gen. Evaluation of allocation of nursing human resource in Guangdong Province based on entropy weight TOPSIS combined with RSR method [J]. Journal of Nursing, 2025, 32(1): 29-33.
[10] HE Fang, WEN Xiu-lan, LIN Yan, SUN Li, WANG Xiao-jie, YU Xin, LIU Hui, GUO Xiao-ping, ZHOU Yan. Establishment and practice of online neonatal nursing consultation clinic based on mobile healthcare [J]. Journal of Nursing, 2024, 31(9): 20-23.
[11] CHEN Jie, MENG Qing-tong, LIU Jing-jin, WU Yan-ni. Development of guideline-based exercise rehabilitation handbook for patients with chronic heart failure [J]. Journal of Nursing, 2024, 31(9): 36-41.
[12] FU Lu-lu, XIE Yi-xuan, WANG Yue, WEI Wei, ZHANG Chuan-ying, ZHU Yu. Evidence summary for auditory stimulation intervention for procedural pain in neonates [J]. Journal of Nursing, 2024, 31(9): 42-47.
[13] CHEN Jie, LAI Jing, WANG Cheng-yue, XU Liang-ying, YAN Juan, LUO Xue. Construction of humanistic care quality evaluation index system of ICU nursing based on Three-dimensional Quality Structure Theory [J]. Journal of Nursing, 2024, 31(9): 54-59.
[14] MU Xiao-ying, ZHOU Fen, FAN Ying-yi, YUAN Ting, WANG Yu-xi, LV Yun-peng, RONG Hong-guo. Patients' preferences for internet-based sharing nursing service of breast massage based on discrete choice experiment [J]. Journal of Nursing, 2024, 31(9): 72-78.
[15] CHEN Si-qi, LIU Ning, HOU Xiao-min, LU Shu-ying. Best evidence summary for perioperative nursing management of enhanced recovery after surgery in robotic surgery for gastric cancer [J]. Journal of Nursing, 2024, 31(8): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!