以质量求发展,以服务铸品牌

Journal of Nursing ›› 2019, Vol. 26 ›› Issue (23): 1-5.doi: 10.16460/j.issn1008-9969.2019.23.001

    Next Articles

Risk Factors and Risk Prediction Model of Drainage Tube Indwelling Time after Breast Cancer Surgery

ZHANG Xiao-lu1, WANG Guo-rong2, ZHENG Ying-ying1, YANG Lu1   

  1. 1. Chengdu University of Chinese Medicine, Chengdu 610036, China;
    2. Sichuan Cancer Hospital and Institution, Chengdu 610041, China
  • Received:2019-07-29 Published:2020-07-27

Abstract: Objective To explore the risk factors affecting postoperative indwelling time of drainage tube of breast cancer patients and establish a risk prediction model. Methods We collected basic clinical data of 200 patients undergoing breast cancer surgery under general anesthesia from May 2018 to April 2019 in a tertiary grade-A hospital. Univariate analysis and logistic regression analysis were used to screen out the risk factors affecting postoperative indwelling time of drainage tube, and a logistic regression prediction model was established. The Hosmer and Lemeshow test was used to test the goodness of fit of the established prediction model, and the area under the ROC curve was used to test the prediction effect of the model. Results Multivariate logistic regression analysis showed BMI (OR=1.337), breast cancer surgical method (OR=4.527), axillary lymph node surgical method (OR=3.483), negative pressure drainage (OR=4.518), underlying disease (OR=6.170) and complications (OR=2.846) were risk factors for the retention of drainage tube after breast cancer surgery. The Hosmer and Lemeshow test indicated that the model fit was (χ2=10.539, P=0.229). The area under the ROC curve (AUC) was 0.842 with a sensitivity of 0.815 and a specificity of 0.750, and the Youden index was 0.565. Conclusion BMI, breast cancer surgical method, axillary lymph node surgical method, one-time negative pressure drainage, basic diseases and complications are independent risk factors for the indwelling time of patients with postoperative drainage. The predictive model established in this study has a high value, which provides reference for the management of postoperative drainage tube retention time in breast cancer patients.

Key words: breast cancer, drainage tube indwelling time, risk factor, risk prediction

CLC Number: 

  • R473.6
[1] Zhao J, Su F, Hu Y,et al.Prospective Comparison of Sapylin and Avitene for Reducing Hydrops after Axillary Lymphadenectomy in Breast Cancer Patients[J]. J Surg Res, 2017, 210:8-14.DOI:10.1016/j.jss2016.10.032.
[2] 张婷. 乳腺癌术后皮下积液影响因素分析[D].杭州:浙江大学, 2017.
[3] Susini T, Renda I, Giani M,et al.Changing Trends in Mastectomy and Breast Reconstruction. Analysis of a Single-institution Experience Between 2004-2016[J].Anticancer Res, 2019, 39(10):5709-5714.DOI:10.21873/anticanres.13770.
[4] 袁慧蓉,梁英,程娜. 60例乳腺癌术后患者康复训练护理实践[J].护理学报,2018, 25(2):67-69. DOI:10.16460/j.ssn1008-9969.2018.02.067.
[5] Elsarrag M, Soldozy S, Patel P, et al.Enhanced Recovery after Surgery (ERAS) for Spine Surgery: A Systematic Review[J]. Neurosurg Focus,2019,46(4):415-426.DOI:10.3171/2019.1.FOCUS18700.
[6] 张蕊,郑黎强, 国伟. 疾病发病风险预测模型的应用与建立[J].中国卫生统计,2015, 32(4):724-726.
[7] 韩树坤. 乳腺癌改良根治术术后引流管拔管时间的选择[J].中国实用医药,2018,13(26):45-46. DOI:10.14163/j.cnki.11-5547/r.2018.26.022.
[8] 陈澎涛. 乳腺癌术后引流时间的影响因素分析[J]. 上海医药,2017,38(15):48-49.DOI:10.3969/J.ISSN.1006-1533.2017.15.012.
[9] 杨丽丽,马淑云,王莉. 乳腺癌患者术后切口引流管留置时间的影响因素及护理对策[J].实用临床医药杂志,2016, 20(12):170-172.DOI:10.7619/jcmp.201612058.
[10] Evans DGR, Harkness, Brentnall AR, et al.Breast Cancer Pathology and Stage are Better Predicted by Risk Stratification Models That Include Mammographic Density and Common Genetic Variants[J]. Breast Cancer Res Treat, 2019, 176(1):141-148. DOI:10.1007/s10549-019-05210-2.
[11] Lee C P, Choi H, Soo K C S, et al. Mammographic Breast Density and Common Genetic Variants in Breast Cancer Risk Prediction[J]. PLoS ONE,2015, 10(9):e0136650. DOI: 10.1371 /journal. pone. 0136650.
[12] Gencay Can A, Cakci F A, et al.Early Detection and Treatment of Subclinical Lymphedema in Patients with Breast Cancer[J]. Lymphat Res Biol, 2019, 17(3):368-373. DOI:10.1089/Lrb. 2018.0033.
[13] Vos H, Smeets A,Neven P, et al.Early Drain Removal Improves Quality of Life and Clinical Outcomes in Patients with Breast Cancer-results from a Randomised Controlled Trial[J]. Eur J Oncol Nurs, 2018,36,112-118. DOI:10.1016/J.EJON.2018.08.007.
[14] Liu F X, Flatt S W, Pakiz B, et al.Physical Activity Levels of Overweight or Obese Breast Cancer Survivors: Correlates at Entry Into a Weight Loss Intervention Study[J]. Support Care Cancer,2016, 24(1):173-180. DOI:10.1007/s00520-015-2761-2.
[15] 游文锋. 超声刀与普通电刀在乳腺癌腋窝淋巴结清扫术中的应用[J].临床医学,2017, 37(9):52-54.DOI:10.3969/j.issn.1005-6483.2015.05.017.
[16] 刘新义,奚凯雯,陈允允. 乳腺癌病人辅助治疗期间体重变化研究进展[J]. 护理研究, 2019, 33(13):2267-2271.DOI:10.12102/J.ISSN.1009-6493.2019.13.018.
[17] 陈立芳,王颖. 中心负压吸引及创面注入沙培林预防乳腺癌术后皮下积液的效果研究[J]. 护理学报, 2017, 24(16):41-42.DOI:10.16460/J.ISSN1008-9969.2017.16.041.
[18] Maskarinec G, Aspelund T, Harris T B, et al.Type 2 Diabetes and Obesity in Midlife and Breast Cancer Risk in the Reykjavik Cohort[J]. Cancer Causes Control, 2019, 30(10): 1057-1065. DOI:10. 1007/s10552-019-01213-y.
[19] Huang B Z, Camp M S, et al.Burden of Preoperative Cardiovascular Disease Risk Factors on Breast Cancer Surgery Outcomes[J].J Surg Oncol, 2016, 114(2):144-149. DOI: 10.1002/jso.24298.
[20] 陈钦羡. 乳腺癌合并高血压糖尿病术后皮下积液的预防措施与临床护理对策研究[J]. 糖尿病新世界, 2017, 20(10):147-148.DOI:10.16658/j.cnki.1672-4062.2017.10.147.
[21] 李敏,耿晓莉. 压力传感器在乳腺癌改良根治术后皮下积液预防中的应用效果观察[J]. 护理研究, 2019, 33(13): 2356-2358. DOI:10.12102/j.issn.1009-6493.2019.13.044.
[22] 黄海涛,李灵,冯俊. 乳腺癌术后切口感染病原菌分布与耐药性分析[J]. 中华医院感染学杂志, 2014, 24(15): 3671-3673. DOI:10.11816/cn.ni.2014-133451.
[23] 徐明月,王湘红,颜灵松. 乳腺癌根治术患者切口感染的影响因素及病原学特点分析[J].中华医院感染学杂志,2019, 29(9):1400-1403. DOI:10.11816/cn.ni.2019-181158.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] HUA Jing, ZHANG Qing-yue, WANG Yan, CHENG Chang, ZHANG Xiu-li, ZHANG Ai'ai. Application of question prompt list in patients undergoing breast cancer surgery [J]. Journal of Nursing, 2024, 31(8): 18-22.
[3] CAO Juan, LI Fang, YU Yue, DAI Li, YANG Dan-dan, LI Zhi-hua, XU Xin-yi, DAI Qi, CHEN Ke-yu. Construction and verification of risk prediction model for venous thromboembolism after esophageal cancer surgery [J]. Journal of Nursing, 2024, 31(8): 63-68.
[4] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[5] JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72.
[6] DAI Mei-fen, LIANG Yu-zhen, YANG Jing, YOU Yan-yan, YANG Qing, CHANG Guang-ting, OU Xing-ying, HUANG Chuan-qiang, CHEN Zhi-xing, OU Jie-fen. Construction of nursing protocol for cancer-related fatigue in breast cancer patients undergoing chemotherapy based on evidence-based practice and theory of chinese medicine [J]. Journal of Nursing, 2024, 31(15): 34-38.
[7] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[8] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[9] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[10] MA Zhu-yue, YAO Shan-shan, SHI Yan-yan, LU Ning-ning, ZHU Ping, CHENG Fang. Development of risk perception questionnaire in women with breast-cancer-related lymphedema and its reliability and validity [J]. Journal of Nursing, 2023, 30(4): 1-5.
[11] GAO Jie, LI Hui-ping, SONG Jiang-yan, LI Jia-xin, ZHOU Meng-ke, ZHANG Shan-shan, PANG Zi-yun. Construction of coping-focused family resilience intervention program for breast cancer patients [J]. Journal of Nursing, 2023, 30(3): 6-10.
[12] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[13] TAN Jian-feng, WANG Yong-cun, ZHENG Xiu-ying, WANG Zheng-ye, LIU yan-hua. Psychological experience and benefit finding in young breast cancer patients during convalescence: a qualitative study [J]. Journal of Nursing, 2023, 30(23): 73-78.
[14] FANG Min, GAO Xing-lian, KE Wen, WANG Ceng-yan, LIANG Yuan-yuan. Establishment of risk prediction model for intraoperative hypothermia in patients undergoing abdominal surgery of digestive system and its validation [J]. Journal of Nursing, 2023, 30(20): 58-62.
[15] ZOU Zi-yu, TANG Hong-mei, WU Li, CHEN Rong-feng, MEI Hua. Scoping Review of Readability Assessment of Breast Cancer-related Health Education Materials [J]. Journal of Nursing, 2022, 29(9): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!