Journal of Nursing ›› 2024, Vol. 31 ›› Issue (10): 1-7.doi: 10.16460/j.issn1008-9969.2024.10.001
OUYANG Die1, XU Dou-dou2a, SUN Yan-rong2b, CHEN Ying2b, LV An-kang2b, WU Bei-wen2a
CLC Number:
[1] Younossi ZM, Golabi P, Paik JM, et al.The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology,2023, 77(4):1335-1347.DOI:10.1097/HEP.0000000000000004. [2] Wijarnpreecha K, Li F, Lundin SK, et al.Higher mortality among lean patients with non-alcoholic fatty liver disease despite fewer metabolic comorbidities[J]. Aliment Pharmacol Ther,2023,57(9):1014-1027. DOI:10.1111/apt.17424. [3] Hu PF, Zeng X, Zou ZY, et al.The presence of NAFLD in nonobese subjects increased the risk of metabolic abnormalities than obese subjects without NAFLD: a population-based cross-sectional study[J]. Hepatobiliary Surg Nutr, 2021,10(6):811-824. DOI:10.21037/hbsn-20-263. [4] Zhu W, Shi P, Fu J, et al.Development and application of a novel model to predict the risk of non-alcoholic fatty liver disease among lean pre-diabetics with normal blood lipid levels[J]. Lipids Health Dis,2022,21(1):149. DOI:10.1186/s12944-022-01752-5. [5] Cai X, Aierken X, Ahmat A, et al.A nomogram model based on noninvasive bioindicators to predict 3-year risk of nonalcoholic fatty liver in nonobese Mainland Chinese: a prospective cohort study[J]. Biomed Res Int,2020,2020: 8852198. DOI: 10.1155/2020/8852198. [6] Liu L, Shi X, Gao J, Xu C, Liu X.Predictive risk factors of nonalcoholic fatty liver disease in a lean Chinese population[J]. J Pers Med, 2022, 12(12):1958. DOI:10.3390/jpm12121958. [7] 中华医学会肝病学分会脂肪肝和酒精性肝病学组,中国医师协会脂肪性肝病专家委员会.非酒精性脂肪性肝病防治指南(2018年更新版)[J].实用肝脏病杂志, 2018, 21(2):177-186. DOI:10.3969/j.issn.1672-5069.2018.02.007. [8] Riley RD, Ensor J, Snell KIE, et al.Calculating the sample size required for developing a clinical prediction model[J]. BMJ,2020,368:m441. DOI:10.1136/bmj.m441. [9] 李培林,张翼.中国中产阶级的规模、认同和社会态度[J]. 社会,2008,28(2):1-19.DOI:10.15992/j.cnki.31-1123/c.2008.02.003. [10] 中国营养学会. 中国居民膳食指南(2016)[M]. 北京: 人民卫生出版社,2016:269-275. [11] Buysse DJ, Reynolds CF, Monk TH, et al.The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research[J]. Psychiatry Res,1989,28(2):193-213. DOI:10.1016/0165-1781(89)90047-4. [12] 刘贤臣,唐茂芹,胡蕾,等.匹兹堡睡眠质量指数的信度和效度研究[J].中华精神科杂志,1996(2):103-107. [13] 屈宁宁,李可基. 国际体力活动问卷中文版的信度和效度研究[J].中华流行病学杂志,2004,25(3):265-268. DOI:10.3760/j.issn:0254-6450.2004.03.021. [14] 樊萌语,吕筠,何平平. 国际体力活动问卷中体力活动水平的计算方法[J].中华流行病学杂志,2014, 35(8):961-964. DOI:10.3760/cma.j.issn.0254-6450.2014.08.019. [15] 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J].中华肝脏病杂志,2010,18(3):163-166.DOI:10.3760/cma.j.issn.1007-3418.2010.03.002. [16] Li J, Zou B, Yeo YH, et al.Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and Meta-analysis[J]. Lancet Gastroenterol Hepatol, 2019, 4(5):389-398. DOI:10.1016/S2468-1253(19)30039-1. [17] Deng J, Zhang Y, Bu L, et al.The prevalence, popular trends, and associated and predictive factors of non-obese fatty liver disease[J]. Front Endocrinol (Lausanne), 2021,12:744710. DOI:10.3389/fendo.2021.744710. [18] Dolce A, Della Torre S.Sex, nutrition, and NAFLD: relevance of environmental pollution[J]. Nutrients,2023,15(10):2335. DOI:10.3390/nu15102335. [19] 贾国瑜,李雪粉,王璐,等. 2型糖尿病患者社会经济地位与非酒精性脂肪肝相关性的回顾性队列研究[J]. 中华肝脏病杂志,2015,23(10):760-764. DOI:10.3760/cma.j.issn.1007-3418.2015.10.010. [20] 钱怡,周清平,梁振宁,等. 慢性病患者参与医患共同决策影响因素的Meta分析[J]. 护理学报,2023,30(20):19-24. DOI:10.16460/j.issn1008-9969.2023.20.019. [21] Cho Y, Chang Y, Ryu S, et al.Skeletal muscle mass to visceral fat area ratio as a predictor of NAFLD in lean and overweight men and women with effect modification by sex[J]. Hepatol Commun,2022,6(9):2238-2252. DOI:10.1002/hep4.1975. [22] 林丽君,金瑛,朱可嘉,等. 肌少症筛查量表在老年患者中的应用进展[J]. 护理学报,2023,30(20):10-15. DOI:10.16460/j.issn1008-9969.2023.20.010. [23] Mokhtari Z, Poustchi H, Eslamparast T, et al.Egg consumption and risk of non-alcoholic fatty liver disease[J]. World J Hepatol,2017,9(10):503-509. DOI:10.4254/wjh.v9.i10.503. [24] Zhang XL, Wang TY, Targher G, et al.Lifestyle interventions for non-obese patients both with, and at risk, of non-alcoholic fatty liver disease[J]. Diabetes Metab J, 2022, 46(3):391-401. DOI:10.4093/dmj.2022.0048. [25] Kim SA, Shin S.Fruit and vegetable consumption and non-alcoholic fatty liver disease among Korean adults: a prospective cohort study[J]. J Epidemiol Community Health, 2020,74(12):1035-1042. DOI:10.1136/jech-2020-214568. [26] Yang J, Luo S, Li R, et al.Sleep factors in relation to metabolic dysfunction-associated fatty liver disease in middle-aged and elderly Chinese[J]. J Clin Endocrinol Metab,2022,107(10):2874-2882. DOI:10.1210/clinem/dgac428. [27] Akram ST, Ewy MW, Said A.Sleep disruption in nonalcoholic fatty liver disease: what is the role of lifestyle and diet?[J]. Eur J Gastroenterol Hepatol, 2021, 33(1S Suppl 1):e308-e312. DOI:10.1097/MEG.0000000000002049. |
[1] | ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58. |
[2] | CAO Juan, LI Fang, YU Yue, DAI Li, YANG Dan-dan, LI Zhi-hua, XU Xin-yi, DAI Qi, CHEN Ke-yu. Construction and verification of risk prediction model for venous thromboembolism after esophageal cancer surgery [J]. Journal of Nursing, 2024, 31(8): 63-68. |
[3] | ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61. |
[4] | JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72. |
[5] | WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41. |
[6] | SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57. |
[7] | ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12. |
[8] | YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52. |
[9] | SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5. |
[10] | ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50. |
[11] | LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18. |
[12] | PENG Ren-mei, QIAN Rong, LI Ya-jun, DUAN Huan, CHEN Lian-fang, LIU Yu-wen. Construction and validation of nomogram to predict sleep disorder risk in patients transferred from ICU [J]. Journal of Nursing, 2023, 30(15): 16-22. |
[13] | ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78. |
[14] | ZHANG Cheng-jie, JING Kun-juan, LIU Dong-xue. Efficacy comparison of nomogram and classification and regression tree in predicting stigma in elderly stroke patients [J]. Journal of Nursing, 2023, 30(11): 7-12. |
[15] | LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na. Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer [J]. Journal of Nursing, 2023, 30(1): 17-21. |
|