以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (11): 7-12.doi: 10.16460/j.issn1008-9969.2023.11.007

Previous Articles     Next Articles

Efficacy comparison of nomogram and classification and regression tree in predicting stigma in elderly stroke patients

ZHANG Cheng-jie, JING Kun-juan, LIU Dong-xue   

  1. School of Nursing, Hebei University,Baoding 071000,China
  • Received:2023-01-30 Online:2023-06-10 Published:2023-07-10

Abstract: Objective To construct a nomogram and classification and regression tree (CART), to explore the application value of the two models in predicting the risk of stigma in elderly stroke patients, and to provide reference for early identification and intervention in high-risk patients. Methods The data of 252 elderly stroke patients hospitalized in a tertiary grade-A hospital in Baoding from May to October 2020 were retrospectively analyzed. The patients were divided into non-stigma group (n=125) and stigma group (n=127) according to whether stigma occurred or not, and a nomogram and CART were established. Internal validation was performed by Bootstrap resampling 1,000 times, and the predictive performance of the 2 models was compared in terms of AUC, sensitivity, specificity, positive predictive value, negative predictive value, and predictive accuracy. Results The AUC, sensitivity, specificity, positive predictive value, negative predictive value and predictive accuracy of CART and nomogram was 0.903 and 0.880, 90.6% and 86.8%, 86.0% and 80.0%, 85.1% and 77.8%, 90.7% and 87.4%, and 88.0% and 82.6% respectively. The differences were statistically significant when comparing the AUC value of the two models (t=19.814, P<0.001). Conclusion Both models have high accuracy and better guidance value, and the prediction performance of the CART is slightly better than that of the nomogram, which could guide the assessment of patient stigma and targeted interventions.

Key words: stroke in elderly people, stigma, nomogram, classification and regression tree, predictive model

CLC Number: 

  • R471
[1] 王子慧. 青年脑卒中患者病耻感现状及影响因素的结构方程模型构建[D].开封:河南大学,2021. DOI:10.27114/d.cnki.ghnau.2021.000518.
[2] Wu Z, Zhang C, Liu N, et al.A nomogram for predicting patent foramen ovale-related stroke recurrence[J]. Front Neurol, 2022,13:903789. DOI:10.3389/fneur.2022.903789.
[3] Heldner MR, Chalfine C, Houot M, et al.Cognitive status predicts return to functional independence after minor stroke: A decision tree analysis[J]. Front Neurol, 2022,13:833020. DOI:10.3389/fneur.2022.833020.
[4] 焦子珊,张新月,沙凯辉.决策树C5.0与Logistic回归对产后压力性尿失禁预测性能的比较[J].护理学报,2022,29(3):12-18. DOI:10.16460/j.issn1008-9969.2022.03.012.
[5] 李雪霏. 基于压力与应对模式脑卒中患者病耻感影响因素研究[D].保定:河北大学,2021.DOI:10.27103/d.cnki.ghebu.2021.000681.
[6] 王晓旭,丁兰,傅胜惠,等.认知评价、应对方式对血液透析患者及其照顾者创伤后成长的影响[J].护理学报,2022,29(8):59-65. DOI:10.16460/j.issn1008-9969.2022.08.059.
[7] Cheng C, Dong D, He J, et al.Psychometric properties of the 10-item Connor-Davidson Resilience Scale (CD-RISC-10) in Chinese undergraduates and depressive patients[J]. J Affect Disord,2020,261:211-220.DOI:10.1016/j.jad.2019.10.018.
[8] 缪华灵,何晓燕,郭宇涵,等.中职学生不同来源的社会支持与生活满意度的关系:心理素质的中介作用[J].西南大学学报(自然科学版),2020,42(10):132-139. DOI:10.13718/j.cnki.xdzk.2020.10.017.
[9] 尹希,常菲,徐欢,等.应对方式在手部烧伤患者烧伤结局与伤残接受度间的中介效应[J].军事护理,2023,40(5):54-57. DOI:10.3969/j.issn.2097-1826.2023.05.013.
[10] 葛春霞,周小燕,洪小丽,等.基于希望理论的团体干预对江苏省某医院中青年脑卒中患者病耻感和负面情绪的影响[J].医学与社会, 2022, 35(8):127-131. DOI:10.13723/j.yxysh.2022.08.024.
[11] Alabi RO, Mäkitie AA, Pirinen M, et al.Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer[J]. Int J Med Inform,2021,145:104313.DOI:10.1016/j.ijmedinf.2020.104313.
[12] Laird KT, Krause B, Funes C, et al.Psychobiological factors of resilience and depression in late life[J]. Transl Psychiatry, 2019,9(1):88. DOI:10.1038/s41398-019-0424-7.
[13] 李玲,李玲.脑卒中病人心理弹性的研究进展[J].护理研究,2020, 34(19):3475-3479.DOI:10.12102/j.issn.1009-6493.2020.19.020.
[14] 许嘉硕,季红娟,李佳镁,等.癌症患者重返工作适应体验及应对资源的扎根理论研究[J].解放军护理杂志,2021,38(2):1-5. DOI:10.3969/j.issn.1008-9993.2021.02.001.
[15] 林晓鸿,彭晓,张文馨,等.肾移植受者健康认知评价与应对方式调查[J].护理学杂志,2015,30(18):9-12. DOI:10.3870/hlxzz.2015.18.009.
[16] 燕文娟,李壮苗,余梦婷,等.脑卒中患者病耻感影响因素的系统评价[J].护理学报,2022,29(8):46-52.DOI:10.16460/j.issn1008-9969.2022.08.046.
[17] 邓翠玉,李丽雅,付丽,等.社区脑卒中患者社会参与水平及其影响因素[J].中国老年学杂志,2021,41(9):1953-1956. DOI:10.3969/j.issn.1005-9202.2021.09.047.
[18] Carter JV, Pan J, Rai SN, et al.ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves[J]. Surgery, 2016,159(6):1638-1645. DOI:10.1016/j.surg.2015.12.029.
[19] Sayed M, Riaño D, Villar J.Novel criteria to classify ARDS severity using a machine learning approach[J]. Crit Care, 2021,25(1):150. DOI:10.1186/s13054-021-03566-w.
[20] Leonard R.Predicting aspiration risk in patients with dysphagia: Evidence from fluoroscopy[J]. Laryngoscope Investig Otolaryngol, 2019,4(1):83-88. DOI:10.1002/lio2.226.
[1] CAO Juan, LI Fang, YU Yue, DAI Li, YANG Dan-dan, LI Zhi-hua, XU Xin-yi, DAI Qi, CHEN Ke-yu. Construction and verification of risk prediction model for venous thromboembolism after esophageal cancer surgery [J]. Journal of Nursing, 2024, 31(8): 63-68.
[2] WU Qian, JIANG Yu, JIN Meng-jie, FAN En, SHI Li, WANG Mei-xin. Current status of social alienation of young patients with newly-treated pulmonary tuberculosis and its influencing factors: a 321-case study [J]. Journal of Nursing, 2024, 31(4): 65-69.
[3] WANG Yue, LIU Guo-qing, NIU Cong-ying, ZHANG Zhen-wei, SUN Jian, CHU You-ai, QIN Han-zhi. Risk prediction models of 30-day mortality after surgery in patients with hip fractures: a scoping review [J]. Journal of Nursing, 2024, 31(24): 51-56.
[4] YANG Li-na, HUANG Rong, YAO Mei-qi, WANG Zhu-qing, XU Yi-Ting, XIE Pei-min. Risk prediction models for postpartum breastfeeding behavior interruption: a systematic review [J]. Journal of Nursing, 2024, 31(23): 59-65.
[5] JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72.
[6] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[7] YANG Nan-nan, JIANG Hui-ping, SHI Ting-qi. Machine learning-based a risk predictive model for deep vein thrombosis in hospitalized patients: a systematic review [J]. Journal of Nursing, 2023, 30(23): 44-49.
[8] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[9] PENG Ren-mei, QIAN Rong, LI Ya-jun, DUAN Huan, CHEN Lian-fang, LIU Yu-wen. Construction and validation of nomogram to predict sleep disorder risk in patients transferred from ICU [J]. Journal of Nursing, 2023, 30(15): 16-22.
[10] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[11] YAN Wen-juan, LI Zhuang-miao, YU Meng-ting, LI Shi-en, CHI Yan-hong. Systematic Review of Influence Factors of Stigma in Stroke Patients [J]. Journal of Nursing, 2022, 29(8): 46-52.
[12] SUN Cai-yun, LIN Zheng, ZHOU Mei-jing, GU Zi-jun, WANG Mi, GU Jun-yi, ZHU Zhan-hui. Current Status of Benefit Finding among Patients with Inflammatory Bowel Diseases and Its Influence Factors [J]. Journal of Nursing, 2022, 29(6): 1-6.
[13] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
[14] JIAO Zi-shan, ZHANG Xin-yue, SHA Kai-hui. Value of Risk Assessment Models Based on Decision Tree C5.0 or Logistic Regression in Predicting Postpartum Stress Urinary Incontinence [J]. Journal of Nursing, 2022, 29(3): 12-18.
[15] TANG Qing-yun, HUANG Xia-yun, LI Yan-yun, XIE Hong-yan, LI Bing. Status of Fear of Progression in HIV/AIDS Young Men Who Have Sex with Men and Its Influencing Factors : A 286- case Study [J]. Journal of Nursing, 2022, 29(21): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!