以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (23): 59-65.doi: 10.16460/j.issn1008-9969.2024.23.059

Previous Articles     Next Articles

Risk prediction models for postpartum breastfeeding behavior interruption: a systematic review

YANG Li-na1,2, HUANG Rong3, YAO Mei-qi1, WANG Zhu-qing1, XU Yi-Ting2,3, XIE Pei-min2   

  1. 1. Dept. of Nursing Administration, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China;
    2. School of Medicine, Tongji University, Shanghai 200092, China;
    3. Dept. of Nursing Administration, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
  • Received:2024-06-12 Online:2024-12-10 Published:2025-01-08

Abstract: Objective To systematically search and evaluate the risk prediction models of postpartum breastfeeding behavior interruption, and to provide reference for clinical development, optimization and application of appropriate models. Methods The literature on risk prediction models of breastfeeding behavior interruption were searched in Web of Science, Cochrane Library, PubMed, Embase, CINAHL, CNKI, CBM, VIP and Wanfang Data. The retrieval time spanned from the inception to April 17, 2024. Two researchers independently screened the literature and extracted data, and the included studies were evaluated using the prediction model risk of bias assessment tool (PROBAST). Results A total of 13 studies were included, involving 18 models. Differentiation was reported in 11 studies; calibration methods were reported in 7 studies; internal validation was performed in 6 studies; external validation was performed in 3 studies, and a combination of internal and external validation was used in 1 study. Maternal age, previous feeding experience, breastfeeding self-efficacy, and multiple pregnancies were the most common predictors reported. Six studies had good applicability but a higher risk of overall bias. Conclusion The research on risk prediction models of breastfeeding behavior interruption is still in the development stage. The risk of bias of the models is generally high, which is mainly reflected in data analysis. In the future, the reporting process and statistical analysis should be further standardized, and the effectiveness and feasibility of the model in clinical practice should be evaluated through external verification.

Key words: breastfeeding interruption, predictive model, systematic review, evidence-based nursing

CLC Number: 

  • R473.71
[1] Victora CG, Bahl R,Barros AJ,et al.Breastfeeding in the 21st century:epidemiology, mech-anisms, and lifelong effect[J].Lancet,2016,387(10017):475-490.DOI:10.1016/S0140-6736(15)01024-7.
[2] Rollins NC, Bhandari N, Hajeebhoy N, et al.Why invest,and what it will take to improve breastfeeding practices?[J].Lancet,2016,387(10017):491-504.DOI:10.1016/S0140-6736(15)01044-2.
[3] 曹译丹,宫可心,朱贝贝,等.母乳喂养对降低宫内暴露高血糖子代超重或肥胖发生风险的Meta分析[J].中国循证医学杂志,2022, 22(10):1167-1174.DOI:10.7507/1672-2531.2022 03128.
[4] Tseng PT,Yen CF,Chen YW,et al.Maternal breastfeeding and attention-deficit/hyperactivit-y disorder in children:a Meta-analysis[J].Eur Child Adolesc Psychiatry,2019,28(1):19-30.DOI:10.1007/s00787-018-1182-4.
[5] Fan D, Xia Q,Lin D,et al.Role of breastfeeding on maternal and childhood cancers:an umbrella review of Meta-analyses[J].J Glob Health,2023,13:04067.DOI:10.7189/jogh.13.04067.
[6] World Health Organization(WHO). The optimal duration of exclusive breastfeeding: report of an expert consultation[EB/OL].(2001-01-01)[2024-05-26].https://www.who.int/publications-detail-redirect/WHO-NHD-01.09.
[7] World Health Organization(WHO). Joint statement by UNICEF Executive Director and WHO Director-General on the occasion of World Breastfeeding Week[EB/OL].(2023-08-01)[2024-03-18].https://www.who.int/news/item/01-08-2023-joint-statement-by-unicef-exec-utive-director-catherine-russell-and-who-director-general-dr-tedros-adhanom-ghebreyesus-on-the-occasion-of-world-breastfeeding-week.
[8] Pérez-Escamilla R, Tomori C, Hernández-Cordero S, et al.Breastfeeding: crucially important, but increasingly challenged in a market-driven world[J].Lancet,2023,401(10375):472-485.DOI:10.1016/S0140-6736(22)01932-8.
[9] 张蕊,郑黎强,潘国伟.疾病发病风险预测模型的应用与建立[J].中国卫生统计,2015,32(4):724-726.
[10] 孙菲,刘敏,胡珊珊,等.基于Meta分析构建早产儿母亲泌乳建立风险预测评分模型[J].护理学报,2023,30(23):1-5.DOI:10.16460/j.issn1008-9969.2023.23.001.
[11] 邢春凤,李国新,张广清,等.产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J].护理学报,2024,31(3):6-11.DOI:10.16460/j.issn1008-9969.2024.03.006.
[12] 王丽云,张明慧,张新月,等.产后压力性尿失禁风险预测模型的系统评价[J].护理学报,2024, 31(3):57-62.DOI:10.16460/j.issn1008-9969.2024.03.057.
[13] Moons KG,Hooft L,Williams K,et al.Implementing systematic reviews of prognosis studies in Cochrane[J]. Cochrane Database Syst Rev,2018, 10(10):ED000129. DOI:10.1002/14651858.ED000129.
[14] Moons KG, de Groot JA, Bouwmeester W,et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J]. PLoS Med,2014, 11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[15] Moons KGM, Wolff RF,Riley RD,et al.PROBAST:A tool to assess risk of bias and app-licability of prediction model studies: explanation and elaboration[J]. Ann Intern Med,2019,170(1):W1-W33.DOI:10.7326/M18-1377.
[16] Berra S,Rajmil L,Passamonte R,et al.Premature cessation of breastfeeding in infants:development and evaluation of a predictive model in two Argentinian cohorts:the CLAC-YD study,1993-1999.Córdoba lactation, feeding, growth and development study[J]. Acta Paediatr (Oslo,Norway:1992),2001,90(5):544-551.DOI:10.1080/080352501750197692.
[17] 赵宏林,侯金萍,佟伟军.母乳喂养影响因素的对数线性模型分析[J].数理医药学杂志,2006(1):5-7.DOI:10.3969/j.issn.1004-4337.2006.01.003.
[18] Kronborg H,Væth M, Olsen J, et al.Early breastfeeding cessation: validation of a prognostic breastfeeding score[J].Acta Paediatr, 2007, 96(5):688-692.DOI:10.1111/j.1651-2227.2007. 00245.x.
[19] 任海燕,梁雨,左彭湘.基于logistic回归与决策树模型的母乳喂养影响因素分析[J].中国卫生统计, 2019,36(4):532-534.DOI:CNKI:SUN:ZGWT.0.2019-04-014.
[20] Kronborg H,Vaeth M.Validation of the Breastfeeding Score-a simple screening tool to predict breastfeeding duration[J].Nutrients,2019,11(12):2852.DOI:10.3390/nu11122852.
[21] Wang Y,Shan C,Zhang Y,et al.Early recognition of the preference for exclusive breastfe-eding in Current China: a prediction model based on Decision Trees[J].Sci Rep,2020,10(1):6720.DOI:10.1038/s41598-020-63073-w.
[22] Ballesta-Castillejos A, Gómez-Salgado J,Rodríguez-Almagro J,et al.Development and vali-dation of a predictive model of exclusive breastfeeding at hospital discharge:retrospective cohort study[J].Int J Nurs Stud,2021,117:103898.DOI:10.1016/j.ijnurstu.2021.103898.
[23] Silva MDB,de Oliveira RVC,da Silveira Barroso Alves D,et al.Predicting risk of early discontinuation of exclusive breastfeeding at a Brazilian referral hospital for high-risk neonates and infants:a decision-tree analysis[J].Int Breastfeed J,2021,16(1):2.DOI:10.1186/s13006-020-00349-x.
[24] Li JY, Huang YY,Huang Y,et al.Development of a breastfeeding duration risk nomogram for use in postpartum Chinese women[J].Res Nurs Health,2022,45(1):94-107.DOI:10.1002/nur.22203.
[25] 童小燕,洪艺玲,刘巧玉,等.产后2个月内非纯母乳喂养风险预测评分模型的构建和验证[J].现代医学,2022,50(8):1038-1045.DOI:10.3969/j.issn.1671-7562.2022.08.018.
[26] Gabay ZP, Gondwe KW, Topaz M.Predicting risk for early breastfeeding cessation in Israel[J]. Matern Child Health J,2022,26(6):1261-1272.DOI:10.1007/s10995-021-03292-3.
[27] 吕倩,付文君,张静娜,等.产后早期非母乳喂养影响因素分析及列线图预测模型建立[J].中国计划生育学杂志,2023,31(6):1352-1356.DOI:10.3969/j.issn.1004-8189.2023.06.020.
[28] Huang R,Wan Y,Yao X,et al.Predictive factors of exclusive breastfeeding attrition at week 6 post-partum among mothers of preterm infants based on the theory of planned behaviour[J].Matern Child Nutr,2023,19(2):e13470.DOI:10.1111/mcn.13470.
[29] Peduzzi P, Concato J,Kemper E,et al.A simulation study of the number of events per variable in logistic regression analysis[J].J Clin Epidemiol,1996,49(12):1373-1379.DOI:10.1016/s0895-4356(96)00236-3.
[30] Collins GS,Ogundimu EO,Altman DG.Sample size considerations for the external valid-ation of a multivariable prognostic model:a resampling study[J]. Stat Med,2016,35(2):214-226.DOI:10.1002/sim.6787.
[31] Van Calster B,Nieboer D,Vergouwe Y,et al.A calibration hierarchy for risk models was defined:from utopia to empirical data[J]. J Clin Epidemiol, 2016, 74:167-176.DOI:10.1016/j.jclinepi.2015.12.005.
[32] Altman DG,Royston P.The cost of dichotomising continuous variables[J]. BMJ,2006,332(7549):1080.DOI:10.1136/bmj.332.7549.1080.
[33] Collins GS, Ogundimu EO, Cook J A,et al.Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model[J]. Stat Med,2016,35(23):4124-4135.DOI:10.1002/sim.6986.
[34] Whiting PF, Rutjes AW,Westwood ME,et al.QUADAS-2:a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med,2011, 155(8):529-536.DOI:10.7326/0003-4819-155-8-201110180-00009.
[35] Vergouwe Y,Royston P,Moons KGM,et al.Development and validation of a prediction model with missing predictor data:a practical approach[J]. J Clin Epidemiol, 2010,63(2):205-214.DOI:10.1016/j.jclinepi.2009.03.017.
[36] Moons KG,Royston P,Vergouwe Y,et al.Prognosis and prognostic research:what,why,and how?[J].BMJ,2009,338:b375.DOI:10.1136/bmj.b375.
[37] Snell KIE, Levis B, Damen JAA, et al.Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and Meta-analyses (TRIPOD-SRMA)[J]. BMJ, 2023(381):e073538.DOI:10.1136/bmj-2022-073538.
[1] LI Ruo-Yu, LIU Xin, LIN Ping, CHEN Dan, LIN Hua. Best evidence summary for medication safety management for discharged patients [J]. Journal of Nursing, 2025, 32(3): 50-55.
[2] YANG Xiao-juan, MAO Xiao-rong, WANG Jing, JIANG Hua, LI Rong, FAN Yu, WEN Qing, LI Lin-zhang, CHEN Xiao-rong. Best evidence summary for early enteral nutrition management in adults with severe burns [J]. Journal of Nursing, 2025, 32(3): 56-61.
[3] LIU Shuo-yi, XIONG Li-juan, LI Ling, WANG Yu-mei, HE Jia, LI Xin, YUAN Shi-lei, GUO Xue-qin, WANG Yang-jing, ZHANG Hui-juan. Quality evaluation and content analysis of clinical practice guidelines for prevention and management of frailty in elderly hospitalized patients [J]. Journal of Nursing, 2025, 32(2): 50-55.
[4] CHEN Jie, MENG Qing-tong, LIU Jing-jin, WU Yan-ni. Development of guideline-based exercise rehabilitation handbook for patients with chronic heart failure [J]. Journal of Nursing, 2024, 31(9): 36-41.
[5] FU Lu-lu, XIE Yi-xuan, WANG Yue, WEI Wei, ZHANG Chuan-ying, ZHU Yu. Evidence summary for auditory stimulation intervention for procedural pain in neonates [J]. Journal of Nursing, 2024, 31(9): 42-47.
[6] JI Rui-ting, LIN Dan-na, LIU Xiao-cheng, LI Ting-ting, XIE Ying-mei, HU Bing, YING Wen-juan. Best evidence for colostrum as oral immune therapy in premature infants [J]. Journal of Nursing, 2024, 31(8): 37-42.
[7] ZHOU Yi-feng, YANG Ji-ping, HU Zheng-zhong, YUAN Hao. Evidence summary for target-oriented blood glucose monitoring in patients undergoing hepatocellular carcinoma resection [J]. Journal of Nursing, 2024, 31(7): 46-50.
[8] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[9] WU Lin-mei, LIANG Zhi-jin, LIU Rui-jie, ZHONG Jing-jing, QIU Yu-hua. Barriers to and facilitators of exercise rehabilitation in patients with COPD: a CFIR-based systematic review [J]. Journal of Nursing, 2024, 31(5): 44-49.
[10] YANG Jian-guo, HE Xi-fei, YAN Jian-jun, ZHANG Meng, YANG Chun-zi, XU Rong, WANG Yan-fang. Best evidence summary for application and management of regional citrate anticoagulation in continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(4): 48-53.
[11] QI Shui-lin, LIN Hua, DENG Rui-ying, LI Rong-jie, LI Ruo-yu, WANG Feng-ting. Best evidence summary for non-pharmacological treatment of pruritus in elderly patients [J]. Journal of Nursing, 2024, 31(3): 46-50.
[12] WANG Yue, LIU Guo-qing, NIU Cong-ying, ZHANG Zhen-wei, SUN Jian, CHU You-ai, QIN Han-zhi. Risk prediction models of 30-day mortality after surgery in patients with hip fractures: a scoping review [J]. Journal of Nursing, 2024, 31(24): 51-56.
[13] ZHANG Zhuo-ya, GAO Wen-yuan, LI jing, GUAN Chun-yan, WANG Miao, MI Yuan-yuan, HUANG Hai-yan. Development of review indicators for perioperative voice rehabilitation in patients with organic vocal fold dysphonia and its obstacle factors [J]. Journal of Nursing, 2024, 31(22): 35-40.
[14] LI Jia-qi, YE Xiang-hong, ZUO Jun-tao, XU Yao, YAO Hong-lin. Qualitative research on nutritional support decision-making process for patients with end-stage disease: a Meta-synthesis [J]. Journal of Nursing, 2024, 31(2): 53-58.
[15] ZHANG Yi-ran, WANG Kang-mei, ZHU Sheng-cai, ZHU Lu, HUANG Yi. COSMIN guideline-based systematic review of Chinese version of self-management assessment tool for hypertension patients [J]. Journal of Nursing, 2024, 31(19): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!