以质量求发展,以服务铸品牌

Journal of Nursing ›› 2020, Vol. 27 ›› Issue (19): 11-16.doi: 10.16460/j.issn1008-9969.2020.19.011

Previous Articles     Next Articles

Establishment, Evaluation of Risk Prediction Model of Major Adverse Cardiac Events in Patients with Acute Coronary Syndrome One Year after Percutaneous Coronary Intervention

SUN Yang-yang1, SUI Ping 2a, LIU Xiao-hong2b, DONG Yu-jiao2a, WANG Ya-nan2b   

  1. 1. School of Nursing, Weifang Medical College, Weifang 261000, China;
    2a. Dept. of Nursing Administration;
    2b. Dept. of Cardiology, Affiliated Hospital of Weifang Medical College, Weifang 261031, China
  • Received:2020-03-31 Online:2020-10-10 Published:2020-11-11

Abstract: Objective To investigate the independent risk factors of major adverse cardiac events (MACEs) in patients with acute coronary syndrome (ACS) 1 year after percutaneous coronary intervention (PCI), and to establish a risk prediction model.Methods A retrospective study was conducted. A total of 271 ACS patients diagnosed in one tertiary gradeA hospital in Weifang receiving 1-year postoperative follow-up were divided into model group(n=190) and validation group (n=81) and the model group was sub-divided into MACE group (n=61) and non-MACE group(n=129). The risk factors in MACE group and non-MACE group were compared and the risk prediction model was established. The prediction effect was assessed using the area under the ROC curve, and 81 patients in validation group were selected to validate the prediction effect of the model.Results Univariate and multivariate analysis showed that left main artery disease, hypertension, smoking history, number of stents implanted, low density lipoprotein, neutrophils and hemoglobin were independent risk factors for MACEs. The predictive model was P=ex/(1+ex), X=-7.476+2.352×left main disease+2.061×hypertension +1.479× smoking history +1.036×number of stent implantation +3.526×low-density lipoprotein +1.096×neutrophil-0.487×hemoglobin. The area under ROC curve of this model was 0.718 [95%CI (0.629~0.807), P< 0.001]; the sensitivity 62.3%; the specificity 79.7%; and the Jorden index 0.420. The area under ROC curve was 0.756 [95%CI (0.682~0.830), P<0.001] and the sensitivity, specificity and accuracy were 89.5%, 85.0% and 81.4% respectively.Conclusion The prediction model constructed in this study has a good effect, which can identify the risk factors of MACEs in patients with ACS 1 year after PCI, and provide reference for clinical medical staff to carry out risk management.

Key words: acute coronary syndrome, PCI postoperative, MACE, risk factor, risk prediction model

CLC Number: 

  • R473.54
[1] 中国医师协会急诊医师分会,中华医学会心血管病学分会,中华医学会检验医学分会.急性冠脉综合征急诊快速诊疗指南[J].中华急诊医学杂志,2016,36(4):397-404.DOI:10.3969/j.issn.1002-1949.2016.03.002.
[2] 史利锋,林平,陈巍,等.经皮冠状动脉介入治疗术后心脏不良事件与冠心病危险因素关系的研究进展[J].解放军护理杂志, 2015, 32(7):27-29.DOI:10.3969/j.issn.1008-9993.2015.07.008.
[3] 谢向荣,汪和贵,汪茗,等.皖南地区中青年与老年冠心病患者危险因素的研究[J].皖南医学院学报,2018,37(1):15-18.DOI:10.3969/j.issn.1002-0217.2018.01.005.
[4] 武俊呈,杨娜,姚志鹏,等.经皮冠脉介入治疗术后死亡率与冠心病危险因素的研究进展[J].中国老年学杂志,2018,38(6):1529-1532.DOI:10.3969/j.issn.1005-9202.2018.06.101.
[5] 段秋艳,徐东妮,陈策.老年ACS患者PCI术后不良心血管事件影响因素分析[J].中国医学前沿杂志(电子版),2018,10(2):88-91.DOI:10.12037/YXQY.2018.02-20.
[6] 刘红涛,曹雪滨,王俊岭,等.急性冠脉综合征患者经皮冠状动脉介入治疗后心力衰竭高危因素分析[J].中华老年多器官疾病杂志,2013,(9):671-674.DOI:10.3724/SP.J.1264.2013.00166.
[7] 张灵芳.待产期孕妇的风险评估及预测模型的构建[D].郑州:郑州大学,2019.
[8] 陈江琼.PICC相关性上肢静脉血栓风险评估模型的构建与初步评价[D].天津:天津医科大学,2017.
[9] 陈晓霜.老年冠心病患者临床特点及PCI后发生MACCE的危险因素分析[D].昆明:昆明医科大学,2017.
[10] 王翎羽,林平.急性冠状动脉综合征危险分层工具的研究进展[J].护理学杂志,2016,31(7):109-112.DOI:10.3870/j.issn.1001-4152.2016.07.109.
[11] Vassalli Giuseppe, d’Angeli Ilaria, Scherff Frank, et al.Comparison of Clinical and Angiographic Prognostic Risk Scores in Elderly Patients Presenting with Acute Coronary Syndrome and Referred for Percutaneous Coronary Intervention[J].Swiss Medical Weekly,2015(145):w14049.DOI:10.4414/smw.2015.14049.
[12] 孙晓文,张文莹,李军涛.乳腺癌术后化疗患者营养不良风险预测评分系统的构建及评价[J].护理学杂志,2018,33(23):1-4.DOI:10.3870/j.issn.1001-4152.2018.23.001.
[13] Chen Y,Du H,Wei BH, et al.Development and Validation Of Risk-stratification Delirium Prediction Model for Critically Ill Patients:a Prospective,Observational,Sing-le-center Study[J].Medicine,2017,96(29):e7543.DOI:10.1097/MD.0000000000007543.
[14] 朱吉基,杨澜,许嘉鸿.老年冠心病患者经皮冠状动脉成型术后生存质量及其相关因素[J].中国老年学杂志, 2014(23):6573-6575.DOI:10.3969/j.issn.1005-9202.2014.23.013.
[15] 刘江萍,木胡牙提.急性冠脉综合征流行病学及危险因素的研究进展[J].国际心血管病杂志, 2019,46(1):1-3.DOI:10.3969/j.issn.1673-6583.2019.01.001.
[16] Shi XJ, Li MN, Xuan L, et al.Clinical Characteristics of Patients with Premature Acute Coronary Syndrome and Adverse Cardiovascular Events after PCI[J].Exp Ther Med, 2019,18(1):793-801.DOI:10.3892/etm.2019.7618.
[17] 马荻,赵振娟,张金丽.经皮冠状动脉介入治疗患者术后2年心脏不良事件发生概率预测模型的建立[J].护理学报,2013,20(10B):33-35.DOI:10.3969/j.issn.1008-9969.2013.20.011.
[18] Eagle KA, Guyton RA, Daviodoff R,et al.ACC/AHA 2004 Guideline Update for Coronary Artery Bypass Graft Surgery:Summary Article.A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery)[J].Amcoil Cardiol,2004, 44(5):213-310.DOI:10.1161/01.CIR.0000138790.14877.7D.
[19] Byrne C, Toarta C, Backus B, et al.The Heart Score in Predicting Major Adverse Cardiac Events in Patients Presenting to the Emergency Department with Possible Acute Coronary Syndrome: Protocol for a Systematic Review and Meta-analysis[J].Syst Rev, 2018,7(1):312-336.DOI:10.1186/s13643-018-0816-4.
[20] 刘惊今.血红蛋白水平对急性ST段抬高型心肌梗死病人预后的影响[J].心血管康复医学杂志,2016, 25(5):464-467.DOI:10.3969/j.issn.1008-0074.2016.05.03.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[3] JIANG Ning-ning. Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(19): 65-72.
[4] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[5] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[6] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[7] LUO Yu-qin, LI Meng-xuan, CHENG Qiu, WANG Ting, ZHENG Jing-yu, FANG Jin-bo, GONG Yu-ping. Case-control Study on Risk Factors of Perianal Infection in Patients with Hematological Malignancy undergoing Chemotherapy [J]. Journal of Nursing, 2022, 29(7): 7-11.
[8] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
[9] XIANG Yu-ting, CHU Jie, YAN Min, LE Qu, YU Jia-xin. Best Evidence Summary of Risk Assessment of Venous Thromboembolism during Pregnancy and Puerperium [J]. Journal of Nursing, 2022, 29(3): 46-51.
[10] ZHAO Xiao-rui, LONG Yun, CHEN Si-qi, BAI Jie, XIAO Xiao, ZHU She-ning. Construction and Validation of Risk Prediction Model for Postoperative Gastrointestinal Dysfunction in Patients with Gynecological Malignant Tumor [J]. Journal of Nursing, 2022, 29(3): 72-78.
[11] DENG Ying, HUANG Shan, HU Hui-xiu, SUN Chao. Effect of Frailty on Prognosis in Elderly Patients with Transient Ischemic Attack [J]. Journal of Nursing, 2022, 29(20): 1-5.
[12] CHEN Xin-hao, LU Gen-di. Risk Factors of Cognitive Impairment after Ischemic Stroke: A Prospective Cohort Study [J]. Journal of Nursing, 2022, 29(18): 6-11.
[13] ZHENG Xiao-jing, YAN Hong-hong, GAN Bin, QIU Xiao-ting, QIU Jie, HUANG Cui-juan, CHEN Xiu-mei. Incidence and Risk Factors of Hypoglycemia in Patients with Hepatocellular Carcinoma [J]. Journal of Nursing, 2022, 29(17): 43-46.
[14] PANG Xue-ying, HU Shao-hua, LI Hui, YIN Dan-qiao, ZHANG Shang-xin, YANG Xiao-dong. Establishment of Nomogram Model to Predict Major Low Anterior Resection Syndrome in Patients with Rectal Cancer One Year after Sphincter-preserving Surgery [J]. Journal of Nursing, 2022, 29(11): 5-10.
[15] GUO Sheng-li, YUAN Wei, ZHU Ting, LIN Wei-na, CHEN Xiao-rong, XIA Mei-yan. Risk Prediction Model for Inadequate Bowel Preparation before Colonoscopy: A Systematic Review [J]. Journal of Nursing, 2022, 29(1): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!