以质量求发展,以服务铸品牌

Journal of Nursing ›› 2020, Vol. 27 ›› Issue (16): 21-24.doi: 10.16460/j.issn1008-9969.2020.16.021

Previous Articles     Next Articles

  

  • Received:2020-02-11 Online:2020-08-25 Published:2020-09-11

CLC Number: 

  • R47
[1] 杨淼淇,柴华,喻革武. 数字化医院的发展趋势和建设要素[J]. 医学信息, 2010, 23(3):555-556.
[2] Bates DW, Saria S, Ohno-Machado L, et al.Big Data in Health Care: Using Analytics to Identify and Manage High-Risk and High-Cost Patients[J]. Health Aff (Millwood), 2014, 33(7):1123-1131. DOI:10.1377/hlthaff.2014.0041.
[3] Shickel B, Tighe PJ, Bihorac A, et al.Deep Ehr: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record(Ehr)Analysis[J].IEEE J Biomed Health Inform,2018,22(5):1589-1604.DOI:10.1109/JBHI.2017.2767063.
[4] Price WN, Cohen IG.Privacy in the Age of Medical Big Data[J]. Nat Med, 2019, 25(1):37-43. DOI:10.1038/s41591-018-0272-7.
[5] Nelson-Brantley HV, Jenkins P, Chipps E.Turning Health Systems Data into Actionable Information[J]. J Nurs Adm, 2019,49(4):176-178.DOI:10.1097/NNA.0000000000000734.
[6] Austin PC, Tu JV, Ho JE, et al.Using Methods from the Data-Mining and Machine-Learning Literature for Disease Classification and Prediction: A Case Study Examining Classification of Heart Failure Subtypes[J]. J Clin Epidemiol, 2013, 66(4):398-407. DOI:10.1016/j.jclinepi.2012.11.008.
[7] Shah P, Kendall F, Khozin S, et al.Artificial Intelligence and Machine Learning in Clinical Development: A Translational Perspective[J]. NPJ Digit Med, 2019, 2:69. DOI:10.1038/s41746-019-0148-3.
[8] Kohli M, Prevedello LM, Filice RW, et al.Implementing Machine Learning in Radiology Practice and Research[J]. AJR Am J Roentgenol, 2017, 208(4):754-760. DOI:10.2214/ajr.16.17224.
[9] Ge Y, Wang Q, Wang L, et al.Predicting Post-Stroke Pneumonia Using Deep Neural Network Approaches[J].Int J Med Inform, 2019,132(1):33.DOI:10.1016/j.ijmedinf.2019.103986.
[10] Rochefort CM, Buckeridge DL, Forster AJ.Accuracy of Using Automated Methods for Detecting Adverse Events from Electronic Health Record Data:A Research Protocol[J]. Implement Sci, 2015, 10(5):9. DOI:10.1186/s13012-014-0197-6.
[11] 陈沅,吴蓓雯,钱蒨健,等. 成人心血管手术压疮高危预测模型的建立与验证[J]. 护理学杂志, 2019, 34(10):52-54.
[12] 黄华平,何海燕,陈斌,等. 失禁性皮炎风险预测模型的构建及验证研究[J]. 中西医结合护理(中英文), 2019, 5(5):1-5. DOI:10.11997/nitcwm.201905001.
[13] 杨青,王国蓉,江宾,等. 基于决策树的肿瘤患者难免性压疮风险预测模型研究[J]. 护理学杂志, 2019, 34(13): 4-7. DOI:10.3870/j.issn.1001-4152.2019.13.004.
[14] Moon M, Lee SK.Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities[J]. Healthc Inform Res, 2017, 23(1): 43-52. DOI:10.4258/hir.2017.23.1.43.
[15] 宋杰. 基于大数据技术的皮肤损伤护理不良事件预测模型的构建和平台研发[D]. 北京:中国人民解放军医学院, 2018.
[16] Park JI, Bliss DZ, Chi CL, et al.Knowledge Discovery with Machine Learning for Hospital-Acquired Catheter-Associated Urinary Tract Infections[J].Comput Inform Nurs, 2019, 38(1):8. DOI:10.1097/CIN.0000000000000562.
[17] 刘芬. 老年住院患者PICC相关深静脉血栓危险因素分析及风险评估模型构建[D]. 北京:中国人民解放军医学院, 2017.
[18] 韩莹,李娜. Nomogram预测模型分析早产儿PICC置管并发静脉炎症的风险[J]. 川北医学院学报, 2019, 34(2): 309-312. DOI:10. 3969/j. issn. 1005-3697. 2019. 02.41.
[19] 邢霞,皮红英,郭晓菊. 颅内破裂动脉瘤术前再出血风险预测模型研究[J]. 神经损伤与功能重建, 2017, 12(5): 407-409. DOI:10.16780/j.cnki.sjssgncj.2017.05.009.
[20] 安莹,王艳玲. 慢性阻塞性肺疾病急性加重期患者短期预后预测模型的建立[J]. 中华护理杂志, 2019, 54(1):42-46. DOI:10.3761/j.issn.0254-1769.2019.01.007.
[21] 王娜,李娟,李霞,等. 肝硬化患者肝性脑病风险预测模型的构建及应用研究[J]. 中华护理杂志, 2019, 54(6):805-811. DOI:10.3761/j.issn.0254-1769.2019.06.001.
[22] 张灵芳. 待产期孕妇的风险评估及预测模型的构建[D]. 郑州:郑州大学, 2019.
[23] 张政,杨金红,荆晨晨,等. 肺癌晚期患者死亡风险预测评分系统的构建及评价[J]. 护士进修杂志, 2019, 34(23): 2122-2126. DOI:10.16821 /j. cnki. hsjx.2019.23.003.
[24] 普鹰,张莹,汤佳骏,等. 腹腔镜手术患者术中低体温预测模型的构建及应用[J]. 中华护理杂志, 2019,54(9):1308-1312. DOI:10.3761/j.issn.0254-1769.2019.09.005.
[25] 张家妍,李丽. ICU颅脑损伤术后患者便秘风险预测模型的构建[J]. 临床与病理杂志, 2018, 38(2):329-334. DOI: 10.3978/j.issn.2095-6959.2018.02.017.
[26] Ge Y, Wang Q, Wang L, et al.Predicting Post-Stroke Pneumonia Using Deep Neural Network Approaches[J]. Int J Med Inform, 2019, 132:103986. DOI:10.1016/j.ijmedinf.2019.103986.
[27] CUI J.Overview of Risk Prediction Models in Cardiovascular Disease Research[J]. Ann Epidemiol, 2009, 19(10): 711-717. DOI:10.1016/j.annepidem.2009.05.005.
[28] Wessler BS, Lai Yh L, Kramer W, et al.Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database[J]. Circ Cardiovasc Qual Outcomes, 2015, 8(4):368-375. DOI:10.1161/circoutcomes.115.001693.
[29] 栗伟,赵大哲,李博,等. Crf与规则相结合的医学病历实体识别[J]. 计算机应用研究, 2015, 32(4):1082-1086. DOI: 10.3969 /j. issn.1001-3695. 2015. 04.029.
[30] 包小源,黄婉晶,张凯,等. 非结构化电子病历中信息抽取的定制化方法[J]. 北京大学学报(医学版), 2018, 50(2):256-263.DOI:10.3969 /j.issn.1671-167X.2018.02.010.
[31] Hong N, Wen A, Shen F, et al.Integrating Structured and Unstructured Ehr Data Using an Fhir-based Type System: A Case Study with Medication Data[J]. AMIA Jt Summits Transl Sci Proc, 2018, 2017(1):74-83.
[32] Malmasi S,Hosomura N,Chang LS, et al.Extracting Healthcare Quality Information from Unstructured Data[J]. AMIA Annu Symp Proc, 2017, 2018(1):1243-1252.
[33] 宋杰,章洁,高远,等. 护理不良事件非结构上报内容的自然语言处理及效果比较[J]. 护理学报, 2018, 25(3):1-4.
[34] Zhang C, Ma R, Sun S, et al. Optimizing the Electronic Health Records through Big Data Analytics: A Knowledge-Based View[J]. IEEE Access, 2019, 7:136223-136231. DOI:10.1109/access.2019.2939158.
[35] Tubaishat A.Perceived Usefulness and Perceived Ease of Use of Electronic Health Records among Nurses: Application of Technology Acceptance Model[J]. Inform Health Soc Care,2018, 43(4):379-389.DOI:10.1080/17538157.2017.1363761.
[36] Brom H, Brooks Carthon JM, Ikeaba U, et al.Leveraging Electronic Health Records and Machine Learning to Tailor Nursing Care for Patients at High Risk for Readmissions[J]. J Nurs Care Qual, 2020, 35(1):27-33. DOI:10.1097/NCQ.0000000000000412.
[1] CHEN En-lin, MO Feng-ling, ZHUANG Ze-ming, ZHANG Ming-zhe, ZHOU Jia-kun, HUANG Li-fang, JI Long-fei, ZHANG Li-fang. Assessment tools for unilateral spatial neglect after stroke: a scoping review [J]. Journal of Nursing, 2025, 32(3): 43-49.
[2] YANG Xiao-juan, MAO Xiao-rong, WANG Jing, JIANG Hua, LI Rong, FAN Yu, WEN Qing, LI Lin-zhang, CHEN Xiao-rong. Best evidence summary for early enteral nutrition management in adults with severe burns [J]. Journal of Nursing, 2025, 32(3): 56-61.
[3] WEI Li, ZHAO Xing-ying, LIU Jia, HE Yu-xuan, CHEN Xiao-mei, YANG Xue, XIAN Ji-shu, YANG Yan-ni. Care burden of family caregivers of severe inpatients in neurosurgery department and its influencing factors [J]. Journal of Nursing, 2025, 32(2): 1-6.
[4] YANG Bei, YE Hong-fang, ZHANG Ning, XIANG Lu-wei, LU Shi-yu. Current status of physical activity and its influencing factors in elderly patients with type 2 diabetes [J]. Journal of Nursing, 2025, 32(2): 7-12.
[5] CAO Min, ZHANG Pei-li, HOU Xiao-ya, GAO Chao-yue, GUO Lin-fang, LI Ying. Nutritional care experience of caregivers of colorectal cancer patients undergoing chemotherapy based on ABC-X model: a qualitative study [J]. Journal of Nursing, 2025, 32(2): 13-18.
[6] . [J]. Journal of Nursing, 2025, 32(2): 19-24.
[7] CHEN Yun, LU Yu-xuan, QI Yan-huan, MAO Jia-hui, ZHONG Yin-qin. Current status and trends of acupuncture and moxibustion in nursing of diabetic peripheral neuropathy: a bibliometric analysis [J]. Journal of Nursing, 2025, 32(2): 25-30.
[8] . [J]. Journal of Nursing, 2025, 32(2): 31-36.
[9] XIA Bi-yun, Chen Yu, WU Yan-yan, Hu Yan. Evidence-based practice to reduce incidence of radial artery occlusion in elderly patients after transradial coronary intervention [J]. Journal of Nursing, 2025, 32(2): 37-43.
[10] ZHU Tian-shun, ZHU Ke-ke, XUE Hui-yuan, JIAO Cong-cong, WEI Chang-hui, WANG He. Application of message framing theory in health management: a scoping review [J]. Journal of Nursing, 2025, 32(2): 44-49.
[11] LIU Shuo-yi, XIONG Li-juan, LI Ling, WANG Yu-mei, HE Jia, LI Xin, YUAN Shi-lei, GUO Xue-qin, WANG Yang-jing, ZHANG Hui-juan. Quality evaluation and content analysis of clinical practice guidelines for prevention and management of frailty in elderly hospitalized patients [J]. Journal of Nursing, 2025, 32(2): 50-55.
[12] . [J]. Journal of Nursing, 2025, 32(2): 56-62.
[13] . [J]. Journal of Nursing, 2025, 32(2): 63-69.
[14] NIU Qing-mei, YU Ying, ZHANG Qian, JIA Ya-tian, TIAN Yu. Construction of follow-up management evaluation index system for patients with lower extremity atherosclerotic occlusive disease based on “three-dimensional quality structure” model [J]. Journal of Nursing, 2025, 32(2): 70-73.
[15] YAN Ya-ling, LE Mei-ni, YAO Tao-qin, WANG Xue-lian, JIANG Jian-ling, XIN Yi. Construction of perioperative frailty management program for elderly patients with gastrointestinal tumors [J]. Journal of Nursing, 2025, 32(2): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!