以质量求发展,以服务铸品牌

Journal of Nursing ›› 2021, Vol. 28 ›› Issue (4): 1-8.doi: 10.16460/j.issn1008-9969.2021.04.001

    Next Articles

Development and Validation of Delirium Prediction Model for Neurosurgical ICU Patients

CHEN Jun-shan, FAN Jie-mei, YU Jin-tian, ZHANG Ai-qin   

  1. Jinling Hospital Affiliated to Medical School of Nanjing University; General Hospital of Eastern Theater Command,Nanjing 210002, China
  • Received:2020-06-20 Online:2021-02-25 Published:2021-03-12

Abstract: Objective To develop and validate a delirium prediction model for neurosurgical ICU patients and determine its clinical value. Methods A total of 665 neurosurgical ICU patients in a tertiary grade-A Hospital in Nanjing were recruited from November 2018 to May 2019. Data of delirious patients (229 cases) were compared with those of non-delirious patients (436 cases) to identify the predictors of neurosurgical ICU delirium, and the logistic regression was used to develop the model. The discrimination of the model was measured using the area under the receiver operating characteristic curve (AUROC). Hosmer-Lemeshow goodness-of-fit test was used to evaluate the calibration ability of the model. A total of 285 patients in neurosurgical ICU from June 2019 to September 2019 were involved to validate the developed model. Results Seven independent predictors of neurosurgical ICU delirium were identified, including gender (OR=2.075), age (OR=1.047), C-reactive protein concentration (OR=3.551), use of physical restriction (OR=1.011), use of sedatives (OR=9.768), use of diuretic or dehydrating drugs (OR=3.123), and Glasgow Coma Scale (OR=0.616). Hosmer-Lemeshow goodness-of-fit test showed that the consistency between the predicted delirium occurrence probability and the actual delirium occurrence probability was good (P=0.398). The AUROC of the model was 0.919, and the Youden's index 0.705, with sensitivity and specificity of 0.847 and 0.858, respectively. For model validation,the sensitivity and specificity was 65.5% and 96.5%, respectively, and the predictive accuracy of the model 87.4%. Conclusion The developed model has good predictive power in predicting the risk of delirium in neurosurgical ICU, and provides reference for health care providers to prevent delirium at an early stage.

Key words: neurosurgical, ICU, delirium, prediction model

CLC Number: 

  • R473.74
[1] Association Psychiatric Association.Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR)[M]. Arlington, VA: American Psychiatric Association, 2000:124-127.
[2] Brummel NE, Girard TD.Preventing Delirium in the Intensive Care Unit[J]. Crit Care Clin,2013,29(1):51-65. DOI: 10.1016/j.ccc.2012.10.007.
[3] Wang J, Ji YY, Wang N, et al.Risk Factors for the Incidence of Delirium in Cerebrovascular Patients in a Neurosurgery Intensive Care Unit: A Prospective Study[J]. J Clin Nurs, 2018, 27(1-2):407-415. DOI:10.1111/jocn.13943.
[4] Cavallazzi R, Saad M, Marik PE.Delirium in the ICU: an Overview[J]. Ann Intensive Care, 2012, 2(1):49. DOI:10.1186/2110-5820-2-49.
[5] 张蕊,郑黎强,潘国伟. 疾病发病风险预测模型的应用与建立[J].中国卫生统计, 2015, 32(4):724-726.
[6] 丁舒,吴瑛,陶香君,等. 院内患者谵妄风险预测模型的系统评价[J].中华护理杂志,2015,50(5):613-619. DOI:10.3761/j.issn.0254-1769.2015.05.022.
[7] 陈俊杉,余金甜,赵思雨,等. ICU患者谵妄风险预测模型研究进展[J].护理学报, 2019, 26(5):15-19. DOI:10.16460/j.issn1008-9969.2019.05.015.
[8] 高永祥,张晋昕. Logistic回归分析的样本量确定[J].循证医学,2018,18(2):122-124. DOI:10.12019/j.issn.1671-5144.2018.02.015.
[9] 祝晓迎. ICU谵妄的风险因素分析及风险预测模型的构建[D].重庆:第三军医大学, 2017.
[10] Ely EW, Margolin R, Francis J, et al.Evaluation of Delirium in Critically Ill Patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU)[J]. Crit Care Med, 2001, 29(7):1370-1379. DOI:10.1097/00003246-200107000-00012.
[11] 孙丹丹,柴文昭,郭海凌,等.不同类型谵妄在机械通气患者中的发生现状及临床结局比较[J].中华护理杂志, 2018, 53(7):778-782.DOI:10.3761/j.issn.0254-1769.2018.07.002.
[12] Pandharipande P, Cotton BA, Shintani A, et al.Motoric Subtypes of Delirium in Mechanically Ventilated Surgical and Trauma Intensive Care Unit Patients[J]. Intensive Care Med, 2007, 33(10):1726-1731. DOI:10.1007/s00134-007-0687-y.
[13] 王忠诚. 王忠诚神经外科学[M]. 武汉:湖北科学技术出版社,2005:1-5.
[14] 中华医学会重症医学分会.中国成人ICU镇痛和镇静治疗指南[J].中华重症医学电子杂志(网络版), 2018, 4(2):90-113. DOI:10.3760/cma.j.issn.2095-4352.2018.06.001.
[15] Devlin JW, Skrobik Y, Gelinas C, et al.Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU[J]. Crit Care Med, 2018, 46(9):e825-e873. DOI:10.1097/CCM.0000000000003299.
[16] 邢焕民,吕冬梅,王晓慧,等. 术后谵妄风险预测模型的构建及应用[J].中华护理杂志, 2019, 54(1):8-13. DOI:10.3761/j.issn.0254-1769.2019.01.001.
[17] Hessler JB, Brönner M, Etgen T, et al.Smoking Increases the Risk of Delirium for Older Inpatients:a Prospective Population Based Study[J]. Gen Hosp Psychiatry, 2015, 37(4):360-364. DOI:10.1016/j.genhosppsych.2015.03.009.
[18] Wansrisuthon W, Ratta-Apha W, Thongchot L, et al.Accuracy of Diagnosis and International Classification of Diseases; Tenth Revision Coding for Alcohol Dependence, Alcohol Withdrawal, and Alcohol Withdrawal Delirium Among Inpatients at a University Hospital[J]. J Addict Med, 2017, 11(3):241-242. DOI:10.1097/ADM.0000000000000307.
[19] Suzuki S, Brown CM, Dela Cruz CD, et al.Timing of Estrogen Therapy after Ovariectomy Dictates the Efficacy of its Neuroprotective and Anti-inflammatory Actions[J]. Proc Natl Acad Sci USA, 2007, 104(14):6013-6018. DOI:10.1073/pnas.0610394104.
[20] 周建雄,杨静. 术后谵妄病因及机制研究进展[J].实用老年医学, 2019, 33(1):7-11. DOI:10.3969/j.issn.1003-9198.2019.01.003.
[21] 王明帅,杨永涛,范正洋,等. 老年患者脊柱术后谵妄的危险因素分析[J].临床骨科杂志, 2019, 22(1):15-18. DOI:10.3969/j.issn.1008-0287.2019.01.007.
[22] Dilger RN, Johnson RW.Aging, Microglial Cell Priming, and the Discordant Central Inflammatory Response to Signals from the Peripheral Immune System[J]. J Leukoc Biol, 2008, 84(4):932-939. DOI:10.1189/jlb.0208108.
[23] 张兰,张武丽,唐启寿. 身体约束使用中的伦理问题及其对策探讨[J].中国医学伦理学, 2017, 30(9):1122-1124, 1129. DOI:10.12026/j.issn.1001-8565.2017.09.14.
[24] Wolf OT.Stress and Memory in Humans: twelve Years of Progress?[J]. Brain Res, 2009, 1293(10):142-154. DOI: 10.1016/j.brainres.2009.04.013.
[25] 陈俊杉,余金甜,张爱琴. ICU患者谵妄风险预测模型的系统评价[J].中国循证医学杂志, 2019, 19(9):1093-1100. DOI:10.7507/1672-2531.201901091.
[26] 吴传芹,朱艳萍,李国宏. ICU患者谵妄的发生率及危险因素分析[J].第三军医大学学报, 2018, 40(11):1038-1043. DOI:10.16016/j.1000-5404.201801018.
[27] Cohen DM.Modeling the Neurologic and Cognitive Effects of Hyponatremia[J]. J Am Soc Nephrol, 2016, 27(3):659-661. DOI:10.1681/ASN.2015060714.
[28] 余晓宁,蔡洁琛,黄利浩,等. 口腔颌面部手术术后谵妄危险因素的Meta分析[J]. 中华口腔医学研究杂志(电子版), 2019, 13(3):166-173. DOI:10.3877/cma.j.issn.1674-1366.2019.03.006.
[29] Cerejeira J, Firmino H, Vaz-Serra A, et al.The Neuroinflammatory Hypothesis of Delirium[J]. Acta Neuropathol, 2010,119(6):737-754. DOI:10.1007/s00401-010-0674-1.[30] 黄洁,肖倩,吴瑛,等. ICU谵妄危险因素的Meta分析[J]. 中华护理杂志, 2010, 45(1):6-9.DOI10.3761/j.issn.0254-1769.2010.01.002.
[31] Maneewong J, Maneeton B, Maneeton N, et al.Delirium after a Traumatic Brain Injury: Predictors and Symptom Patterns[J]. Neuropsychiatr Dis Treat, 2017, 13(2):459-465. DOI:10.2147/NDT.S128138. eCollection 2017.
[32] 杨克虎. 系统评价指导手册[M].北京:人民卫生出版社, 2013:197-198.
[33] 张爱琴,陈俊杉,余金甜. ICU患者谵妄非药物管理相关指南的系统评价[J].护理学报, 2020, 27(11):26-32. DOI:10.16460/j.issn1008-9969.2020.11.026.
[34] 旷小羿,侯惠如. 基于电子病历数据的风险预测模型在临床护理中的应用现状[J]. 护理学报, 2020, 27(16):21-24. DOI:10.16460/j.issn1008-9969.2020.16.021.
[1] ZHENG Xiao-jing, YAN Hong-hong, LI Hui-jing, CHEN Si-juan, CHEN Xiu-mei. Construction and verification of risk prediction model for hypoglycemia with hepatocellular carcinoma [J]. Journal of Nursing, 2025, 32(4): 53-58.
[2] CHEN Jie, LAI Jing, WANG Cheng-yue, XU Liang-ying, YAN Juan, LUO Xue. Construction of humanistic care quality evaluation index system of ICU nursing based on Three-dimensional Quality Structure Theory [J]. Journal of Nursing, 2024, 31(9): 54-59.
[3] HE Jiao, LIU Yi-lan, GUAN Chun-yan, HAN Yan-hong, CHEN Rui, HU De-ying. Construction of humanistic care training course system for hospital nurses based on Taylor Principle [J]. Journal of Nursing, 2024, 31(8): 13-17.
[4] TENG Yan, YANG Lu, YANG Jing, ZHENG Min, HUANG Ning, GAO Xiang. Development and implementation of Integrated Modular Theoretical and experimental curriculum using case-based analysis in nursing pathophysiology education [J]. Journal of Nursing, 2024, 31(6): 26-29.
[5] ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61.
[6] LU Zhen-tao, SHI Fu-xia, WANG Yu-hui, GUO Jing. Clinical application rules of auricular point sticking for cancer-induced fatigue based on data mining [J]. Journal of Nursing, 2024, 31(19): 8-11.
[7] ZHANG Yu-xia, FAN Xiao-hui, WANG Xue-jiao, LIU Yu-an, LI Le-zhi. Translation of Mindful Self-care Scale and its reliability and validity in ICU nurses [J]. Journal of Nursing, 2024, 31(15): 46-51.
[8] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[9] WANG Xiao-jun, ZHOU Jin-li, HOU Sai-ning, ZHOU Yuan-yuan, XIA Li-ping. Current status of Nursing Informatics Curriculum setting for higher vocational nursing program in China [J]. Journal of Nursing, 2024, 31(10): 13-16.
[10] HUANG Wen-yan, SONG Ling-hua, LIAO Shao-na, GONG Xue, YANG Chen , SONG Hui-juan. Mediating effect of regulatory emotion self-efficacy between narrative competence and rumination of ICU nurses [J]. Journal of Nursing, 2024, 31(1): 17-21.
[11] WANG Wei, LU Qian, SONG Yan-ru, KE Sang-sang, LIU Chun-lei. Methodological quality of studies on prediction model published in Chinese nursing core journals in recent five years [J]. Journal of Nursing, 2024, 31(1): 37-41.
[12] SHI Ting-ting, LI Ting, HUANG You-peng, ZHAO Yuan, ZHU Xiao-li, ZHOU Meng-juan, CHEN Yun-mei. Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review [J]. Journal of Nursing, 2024, 31(1): 52-57.
[13] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[14] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[15] YANG Qi-di, WANG Yi, YUAN Cui, WANG Ying, XIAO Yan-yan, WANG Fang. Facilitators and barriers in structured handover from ICU to general ward based on theoretical domain framework [J]. Journal of Nursing, 2023, 30(7): 75-78.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!