以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (23): 8-12.doi: 10.16460/j.issn1008-9969.2024.23.008

Previous Articles     Next Articles

Cross-lagged analysis of cognitive function and physical frailty changes in elderly residents of nursing homes

DENG Lan-xin, ZHANG Yu, LI Min-rui, GAO Yu-lin   

  1. School of Nursing, Southern Medical University, Guangzhou 510515, China
  • Received:2024-07-16 Online:2024-12-10 Published:2025-01-08

Abstract: Objective To investigate the temporal trends in physical frailty and cognitive function among elderly residents in nursing homes and to analyze the time-series relationship between them. Methods A stratified random sampling was used to select 512 elderly residents in a nursing home in Guangzhou from September to December 2022 (T1) and from June to September 2023 (T2). The Frailty Phenotype Scale and the Montreal Cognitive Assessment Scale were employed to assess their physical frailty and cognitive function. Repeated measures ANOVA was applied to explore gender differences over time, while Spearman correlation analysis to assess the relationship between frailty and cognitive function. A cross-lagged panel model was constructed using Mplus 8.3 to analyze the bidirectional relationship between the two variables. Results Cognitive function among the elderly in nursing homes showed a declining trend, and frailty scores at both time points were significantly positively correlated. Autoregressive results indicated that frailty significantly predicted future frailty (β=0.567, P<0.001), while cognitive function significantly predicted future cognitive function (β=0.680, P<0.001). The cross-lagged model revealed that cognitive function had a significant negative predictive effect on future frailty (β=-0.146, P=0.002), whereas frailty did not significantly predict future cognitive function (β=0.064, P=0.134). Conclusion Elderly residents in nursing homes with lower cognitive function are more likely to experience future physical frailty, with a continued decline in cognitive function and worsening frailty symptoms. Healthcare professionals should strengthen the monitoring of cognitive function and physical frailty for elderly residents in nursing homes and implement comprehensive care interventions such as cognitive training, physical exercise, and nutritional support to slow the progression of cognitive decline and frailty, thereby promoting healthy aging.

Key words: frailty, cognitive function, cross-lagged model, nursing home, elderly health, longitudinal study

CLC Number: 

  • R473.2
[1] 中华医学会老年医学分会.老年患者衰弱评估与干预中国专家共识[J].中华老年医学杂志,2017,36(3):251-256. DOI:10.3760/cma.j.issn.0254-9026.2017.03.007.
[2] 倪秀石,吴方,宋娟,等.老年人认知障碍评估中国专家共识(2022)[J].中华老年医学杂志,2022,41(12):1430-1440. DOI:10.3760/cma.j.issn.0254-9026.2022.12.006.
[3] Ge ML, Chu NM, Simonsick EM, et al.Order of onset of physical frailty and cognitive impairment and risk of repeated falls in community-dwelling older adults[J]. J Am Med Dir Assoc,2023,24(4):482-488. DOI:10.1016/j.jamda.2023.01.020.
[4] Zhang Y, Li MR, Chen X, et al.Prevalence and risk factors of cognitive frailty among pre-frail and frail older adults in nursing homes[J]. Psychogeriatrics, 2024, 24(3):529-541. DOI:10.1111/psyg.13087.
[5] 韩君,王君俏,王悦,等.75岁及以上社区老年人身体衰弱与认知功能现状及相关性分析[J]. 复旦学报(医学版),2021,48(4):494-502. DOI:10.3969/j.issn.1672-8467.2021.04.011.
[6] 袁帅,曹文蕊,张曼玉,等.通向更精确的因果分析:交叉滞后模型的新进展[J].中国人力资源开发,2021,38(2):23-41. DOI:10.16471/j.cnki.11-2822/c.2021.2.002.
[7] 方平,熊端琴,曹雪梅.结构方程模式的发展与应用[J].心理科学进展,2002(3):270-279.DOI:10.3969/j.issn.1671-3710.2002.03.005.
[8] Fried LP, Tangen CM, Walston J,et al.Frailty in older adults: evidence for a phenotype[J].J Gerontol A Biol Sci Med Sci,2001,56(3):146-156. DOI:10.1093/gerona/56.3.m146.
[9] 王炜,刘丹丹,高中宝,等.蒙特利尔认知评估量表(中文版)在驻京军队离退休干部中界值划分的初步研究[J].中华保健医学杂志, 2010, 12(4):271-273.DOI:10.3969/j.issn.1674-3245.2010.04.011.
[10] Nasreddine ZS, Phillips NA, Bédirian V, et al.The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J].J Am Geriatr Soc,2005,53(4):695-699. DOI:10.1111/j.1532-5415.2005.53221.x.
[11] Rubenstein LZ, Harker JO, Salvà A,et al.Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF)[J].J Gerontol A Biol Sci Med Sci,2001,56(6):366-372. DOI:10.1093/gerona/56.6.m366.
[12] Lei Z, Qingyi D, Feng G, et al.Clinical study of mini-nutritional assessment for older Chinese inpatients[J]. J Nutr Health Aging,2009,13(10):871-875. DOI:10.1007/s12603-009-0244-1.
[13] 毛拥军,吴剑卿,刘龚翔,等.老年人营养不良防控干预中国专家共识(2022)[J].中华老年医学杂志,2022,41(7):749-759. DOI:10.3760/cma.j.issn.0254-9026.2022.07.001.
[14] Sheikh JI, Yesavage JA.Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version[J].Clinical Gerontologist,1986,5(1-2):165-173. DOI:10.3109/09638288.2010.503835.
[15] Chan AC.Clinical validation of the Geriatric Depression Scale (GDS): Chinese version[J].J Aging Health, 1996, 8(2):238-253. DOI:10.1177/089826439600800205.
[16] 唐丹. 简版老年抑郁量表(GDS-15)在中国老年人中的使用[J].中国临床心理学杂志,2013,21(3):402-405. DOI:10.16128/j.cnki.1005-3611.2013.03.036.
[17] Zhang Y, Zhou JJ, Zhang XM, et al.Management of cognitive frailty: A network meta-analysis of randomized controlled trials[J].Int J Geriatr Psychiatry,2023,38(9):e5994. DOI:10.1002/gps.5994.
[18] Hu LT, Bentler PM.Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives[J]. Structural Equation Modeling,1999,6(1):1-55. DOI:10.1080/10705519909540118.
[19] 汤丹丹,温忠麟.共同方法偏差检验:问题与建议[J].心理科学,2020, 43(1):215-223.DOI:10.16719/j.cnki.1671-6981.20200130.
[20] 焦丽颖,郭震,史慧玥,等.善良人格与道德需要满足的关系:交叉滞后研究[J].心理科学,2023, 46(1):154-161. DOI:10.16719/j.cnki.1671-6981.20230120.
[21] 郭凯林,王世强,李丹,等.我国老年人衰弱的发展轨迹:基于潜变量增长模型的分析[J].中国全科医学,2022,25(6):742-749. DOI:10.12114/j.issn.1007-9572.2021.02.119.
[22] 李欣,孙超,胡慧秀,等.养老机构老年人认知功能现状及影响因素分析[J].中华护理杂志,2023,58(4):446-451. DOI:10.3761/j.issn.0254-1769.2023.04.009.
[23] 姚晨晨,陈娟,杨雷.老年衰弱患者基于埃德蒙顿衰弱量表评估分层抗阻运动的效果观察[J].护理学报,2024,31(7):73-78. DOI:10.16460/j.issn1008-9969.2024.07.073.
[24] 朱明月,史纪元,李峥.计算机化认知训练对认知功能障碍患者干预效果的系统评价再评价[J].护理学报,2023,30(21):46-53. DOI:10.16460/j.issn1008-9969.2023.21.046.
[25] Sheng K, Chen H, Qu X.The effects of cognitive leisure activities on frailty transitions in older adults in China: a CHARLS-Based longitudinal study[J].BMC Public Health,2024,24(1):1405. DOI:10.1186/s12889-024-18889-w.
[26] Guo CY, Sun Z, Tan CC, et al.Multi-concept frailty predicts the late-life occurrence of cognitive decline or dementia: an updated systematic review and Meta-analysis of longitudinal studies[J]. Front Aging Neurosci, 2022,14:855553. DOI:10.3389/fnagi.2022.855553.
[1] LIU Shuo-yi, XIONG Li-juan, LI Ling, WANG Yu-mei, HE Jia, LI Xin, YUAN Shi-lei, GUO Xue-qin, WANG Yang-jing, ZHANG Hui-juan. Quality evaluation and content analysis of clinical practice guidelines for prevention and management of frailty in elderly hospitalized patients [J]. Journal of Nursing, 2025, 32(2): 50-55.
[2] YAN Ya-ling, LE Mei-ni, YAO Tao-qin, WANG Xue-lian, JIANG Jian-ling, XIN Yi. Construction of perioperative frailty management program for elderly patients with gastrointestinal tumors [J]. Journal of Nursing, 2025, 32(2): 74-78.
[3] XUE Rong, ZHANG Kai-li, CHEN Bao-yun, MA Rong-hui, ZHANG Yu-xin. Multidimensional frailty development trajectory and its influencing factors in middle-aged and elderly stroke patients [J]. Journal of Nursing, 2024, 31(6): 6-12.
[4] WANG Wei, ZHOU Yan-ling, XUE Wen-ping, ZHANG Lin-lin, LIN Shu-qiu. Frailty assessment tools for elderly patients with hip fracture [J]. Journal of Nursing, 2024, 31(4): 42-47.
[5] YANG Xiao-yan, WANG Jing, YANG Ya-ping. Knowledge, attitudes, and behaviors of nurses in Shanghai nursing homes regarding incontinence-associated dermatitis: a qualitative study [J]. Journal of Nursing, 2024, 31(24): 18-22.
[6] MOU Xiao-ling, CHEN Yu-qi, LIU Hai-yan, LI Min, DONG Min, HUANG Jia-jia, LI Xuan, CHEN Yu. Postoperative depression and its influencing factors among lung transplant recipients [J]. Journal of Nursing, 2024, 31(21): 7-11.
[7] HAO Yang, QIN Yan-mei, MAO Mei-qi, ZHAO Ya-ning, LIU Yao, HAN Ying. Influencing factors of cognitive frailty in community-dwelling elderly individuals based on Bayesian network model [J]. Journal of Nursing, 2024, 31(19): 12-18.
[8] SHI Yang, GU Zhi-e, ZHU Tong, YU Jing, WANG Lin. Chain-mediated effects of social network and self-neglect between frailty and cognitive function in elderly patients with ischemic stroke [J]. Journal of Nursing, 2024, 31(17): 40-45.
[9] GUO Shi-hong, BAI Xiao-ling, LOU Ting, YU Na, YANG Zeng-zhen, NIU Yu-tian, LI Hui. Assessment tools for oral frailty: a scoping review [J]. Journal of Nursing, 2024, 31(14): 52-56.
[10] WANG Pei, GAO Hui, ZHANG Li-hua, ZHANG Lan-fang, YANG Hao-shuang, ZHANG Yin-ling. Potential profile analysis of social participation ability of elderly people and its influence on frailty [J]. Journal of Nursing, 2024, 31(12): 1-6.
[11] LI Hui-yuan, GUO Xue-qi, TANG Qi-qun, HU Hui-ju, YANG Jiao, CHEN Yao. Role of Subjective Cognitive Decline Questionnaire 21 in cognitive assessment of elderly people in nursing homes [J]. Journal of Nursing, 2023, 30(8): 12-16.
[12] ZHU Ming-yue, DING Xiao-tong, SHI Ji-yuan, Li Zheng. Effects of self-perception of aging on cognitive function in elderly people: a systematic review [J]. Journal of Nursing, 2023, 30(8): 52-57.
[13] CHEN Jian, WANG Yuan, CUI Yan-li, LUO Yan-si, LIAO Lin, YAN Ming-yu, ZHANG Xiao-mei. Development trajectory of oral intake function in patients with post-stroke dysphagia and its influencing factors [J]. Journal of Nursing, 2023, 30(24): 1-6.
[14] REN Ying, YU Wei-hua, ZHANG Li. Current status of reversible cognitive frailty of elderly people in medical-nursing combined care institutions and its influencing factors [J]. Journal of Nursing, 2023, 30(23): 6-11.
[15] LIU Hai-hong, ZHANG Xiao-lei, XUE Ru, TAO Jia-yu, LI Xiao-min, LI Feng, LIU Hai-ning. Influencing factors of cognitive function of older adults with subjective cognitive decline based on machine learning [J]. Journal of Nursing, 2023, 30(23): 57-61.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!