CLC Number:
[1] Papazian L, Aubron C, Brochard L, et al.Formal Guidelines: Management of Acute Respiratory Distress Syndrome[J].Ann Intensive Care,2019,9(1):69.DOI:10.1186/s13613-019-0540-9. [2] Bime C,Casanova N,Oita RC,et al.Development of a Biomarker Mortality Risk Model in Acute Respiratory Distress Syndrome[J].Crit Care, 2019,3(1):410. DOI:10.1186/s13054-019-2697-x. [3] Matthay MA, Zemans RL, Zimmerman GA, et al.Acute Respiratory Distress Syndrome[J]. Nat Rev Dis Primers,2019,5(1):18. DOI:10.1038/s41572-019-0069-0. [4] Seethala RR, Hou PC, Aisiku IP, et al.Early Risk Factors and the Role of Fluid Administration in Developing Acute Respiratory Distress Syndrome in Septic Patients[J]. Ann Intensive Care,2017,7(1):11.DOI:10.1186/s13613-017-0233-1. [5] Ferguson ND, Fan E, Camporota L, et al.The Berlin Definition of ARDS: An Expanded Rationale, Justification, and Supplementary Material[J].Intensive Care Med,2012,38(10):1573-1582. DOI:10.1007/s00134-012-2682-1. [6] 刘大为. 急性呼吸窘迫综合征:前世与今生[J].协和医学杂志,2020,11(5):501-507.DOI:10.3969/j.issn.1674-9081.2020.05.001. [7] Reilly JP, Calfee CS, Christie JD.Acute Respiratory Distress Syndrome Phenotypes[J].Semin Respir Crit Care Med,2019,40(1):19-30. DOI:10.1055/s-0039-1684049. [8] See KC.Acute Cor Pulmonale in Patients with Acute Respiratory Distress Syndrome:A Comprehensive Review[J].World J Crit Care Med,2021,10(2):35-42. DOI:10.5492/wjccm.v10.i2.35. [9] Abe T, Ogura H, Shiraishi A, et al.Characteristics, Mmanagement, and in-Hospital Mortality among Patients with Severe Sepsis in Intensive Care Units in Japan: The FORECAST Study[J].Crit Care,2018,22(1):322.DOI:10.1186/s13054-018-2186-7. [10] 王珊珊,贺琳晰.急性呼吸窘迫综合征机械通气患儿应用俯卧位联合高频胸壁振荡排痰的效果观察[J].护理学报,2019,26(19):53-56.DOI:10.16460/j.issn1008-9969.2019.19.053. [11] Guérin C, Albert RK, Beitler J, et al.Prone Position in ARDS Patients: Why, When, How and for Whom[J].Intensive Care Med,2020,46(12):2385-2396.DOI:10.1007/s00134-020-06306-w. [12] Lelubre C, Vincent JL.Mechanisms and Treatment of Organ Failure in Sepsis[J].Nat Rev Nephrol,2018,14(7):417-427. DOI:10.1038/s41581-018-0005-7. [13] 旷小羿,侯惠如.基于电子病历数据的风险预测模型在临床护理中的应用现状[J].护理学报,2020,27(16):21-24. DOI:10.16460/j.issn1008-9969.2020.16.021. [14] Trillo-Alvarez C, Cartin-Ceba R, Kor DJ, et al.Acute Lung Injury Prediction Score: Derivation and Validation in a Population-Based Sample[J].Eur Respir J, 2011, 37(3):604-609. DOI:10.1183/09031936.00036810. [15] Gajic O, Dabbagh O, Park PK, et al.Early Identification of Patients at Risk of Acute Lung Injury: Evaluation of Lung Injury Prediction Score in a Multicenter Cohort Study[J].Am J Respir Crit Care Med,2011, 183(4):462-470.DOI:10.1164/rccm.201004-0549OC. [16] 夏炎火,童秋玲,林锡芳,等.肺损伤预测评分在ALI/ARDS早期诊断中的应用[J].医学研究杂志,2013, 42(2):120-123. DOI:10.3969/j.issn.1673-548X.2013.02.037. [17] Kor DJ,Carter RE, Park PK,et al.Effect of Aspirin on Development of ARDS in At-risk Patients Presenting to the Emergency Department: The LIPS-A Randomized Clinical Trial[J].JAMA,2016,315(22):2406-2414. DOI:10.1001/jama.2016.6330. [18] 张芮豪,夏金根,詹庆元.脓毒症并发急性呼吸窘迫综合征的危险因素及预测评分研究进展[J]. 解放军医学杂志,2020,45(12):1309-1314. [19] Mayampurath A, Churpek MM, Su X, et al.External Validation of an Acute Respiratory Distress Syndrome Prediction Model Using Radiology Reports[J].Crit Care Med,2020,48(9):e791-e798. DOI:10.1097/CCM.0000000000004468. [20] Iriyama H, Abe T, Kushimoto S, et al.Risk Modifiers of Acute Respiratory Distress Syndrome in Patients with Non-Pulmonary Sepsis:a Retrospective Analysis of the FORECAST study[J].J Intensive Care,2020,8:7.DOI:10.1186/s40560-020-0426-9. [21] Seethala RR, Hou PC, Aisiku IP, et al.Early Risk Factors and the Role of Fluid Administration in Developing Acute Respiratory Distress Syndrome in Septic Patients[J]. Ann Intensive Care,2017, 7(1):11.DOI:10.1186/s13613-017-0233-1. [22] 黄力维. 急性呼吸窘迫综合征预警体系建立的临床研究[D].南京:东南大学,2015. DOI:10.7666/d.Y2921066. [23] 惠宁,张文杰.慢性心力衰竭患者营养不良风险预测模型的构建及验证[J].中华护理杂志, 2021,56(3):325-329. DOI:10.3761/j.issn.0254-1769.2021.03.001. [24] 梅华鲜. 毛细血管渗漏指数对脓毒症患者并发ARDS的早期诊断价值[D].武汉:华中科技大学,2017.DOI:10.7666/d.D01309557. [25] 谢晓冉,徐蓉.糖尿病足发病风险预测模型的系统评价[J].中华护理杂志,2021,56(1):124-131.DOI:10.3761/j.issn.0254-1769.2021.01.021. [26] 荆晨晨,孙淑青,秦德春.急性呼吸窘迫综合征患者早期风险预测模型的建立[J]. 中华护理杂志,2020,55(9):1285-1291. DOI:10.3761/j.issn.0254-1769.2020.09.001. [27] 安莹,王艳玲.慢性阻塞性肺疾病急性加重期患者短期预后预测模型的建立[J]. 中华护理杂志,2019,54(1):42-46. DOI:10.3761/j.issn.0254-1769.2019.01.007. [28] Zhang Z, Ni H.Prediction Model for Critically Ill Patients with Acute Respiratory Distress Syndrome[J]. PLoS One,2015,10(3):e0120641. DOI:10.1371/journal.pone.0120641. [29] Pavlou M, Ambler G, Seaman SR, et al.How to Develop a More Accurate Risk Prediction Model When There Are Few Events[J]. BMJ,2015,351:3868.DOI:10.1136/bmj.h3868. [30] 秦燕明,王鹏,徐旋旋,等.严重多发伤继发急性呼吸窘迫综合征的危险因素分析[J].中华危重病急救医学,2021,33(3):299-304.DOI:10.3760/cma.j.cn121430-20201023-00685. [31] 秦蘅. 中青年及老年中、重度急性呼吸窘迫综合征的预后相关危险因素分析[D].重庆:重庆医科大学,2017. DOI:10.7666/d.D01260564. [32] 谢晓元,马金兰,巴应贵.老年急性呼吸窘迫综合征患者并发急性肾损伤危险因素及预后[J]. 中国老年学杂志,2020,40(19):4157-4161. DOI:10.3969/j.issn.1005-9202.2020.19.041. [33] 黄桥,黄笛,靳英辉,等.临床研究中常用的统计方法和常见问题[J].中国循证心血管医学杂志, 2017, 9(11):1288-1293. DOI:10.3969/j.issn.1674-4055.2017.11.02. [34] 程锦,程文炜,刘晓芳,等.层次结构数据的分析方法及SPSS实现[J].中华老年医学杂志,2020,39(10):1236-1240. DOI:10.3760/cma.j.issn.0254-9026.2020.10.030. |
[1] | . [J]. Journal of Nursing, 2024, 31(15): 62-67. |
[2] | ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng. Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review [J]. Journal of Nursing, 2024, 31(6): 56-61. |
[3] | HUANG Xin, YU Li-jun, ZHANG Er-ming, HA Li-na. Current status of energy intake in patients with stable COPD and its influencing factors [J]. Journal of Nursing, 2024, 31(5): 12-16. |
[4] | WU Lin-mei, LIANG Zhi-jin, LIU Rui-jie, ZHONG Jing-jing, QIU Yu-hua. Barriers to and facilitators of exercise rehabilitation in patients with COPD: a CFIR-based systematic review [J]. Journal of Nursing, 2024, 31(5): 44-49. |
[5] | HOU Ya-tian, CHEN Si-nuo, LIU Meng-hui, ZHANG Bo-wen, AN Xiang, LIU Yun, XU Wen-qi, ZHANG Ming-yang. Best evidence summary for identification and prevention of silent aspiration in mechanically ventilated patients [J]. Journal of Nursing, 2023, 30(18): 36-41. |
[6] | . [J]. Journal of Nursing, 2023, 30(17): 29-33. |
[7] | . [J]. Journal of Nursing, 2023, 30(17): 34-38. |
[8] | . [J]. Journal of Nursing, 2023, 30(13): 59-64. |
[9] | . [J]. Journal of Nursing, 2023, 30(10): 46-51. |
[10] | . [J]. Journal of Nursing, 2023, 30(6): 72-78. |
[11] | HOU xiang-chuan, WU yan-ting, ZHOU kai-qi, MO yi-jian, HUANG li-xiang, LIU yi-sha. Best Evidence-based Practice for Improving Qualified Rate of Sputum Collection in Patients with with Respiratory Diseases [J]. Journal of Nursing, 2022, 29(24): 43-48. |
[12] | HONG Li-wei, HOU Chun-yi, SHEN Xiang-xiang, ZHANG Hui-jin, ZHANG Qing, JU Chun-rong, HUANG Dan-xia. Best Evidence Summary for Prevention and Management of Complication in Discharged Patients after Lung Transplantation [J]. Journal of Nursing, 2022, 29(18): 47-52. |
[13] | . [J]. Journal of Nursing, 2022, 29(16): 55-60. |
[14] | . [J]. Journal of Nursing, 2022, 29(13): 46-51. |
[15] | YANG Yang, LIU Ning. Best Evidence Summary for Nursing Assessment and Management of Acupoint Application for “Treatment of Winter Diseases in Summer” for Treating Bronchial Asthma [J]. Journal of Nursing, 2022, 29(5): 15-21. |
|