Missing data in patient-reported outcomes in clinical studies and its solutions

SHI Chen, YAN Ze-lin, MA Jia-jun, LI Xin-xu, OU Chun-quan

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (18) : 35-38.

PDF(845 KB)
PDF(845 KB)
Journal of Nursing ›› 2024, Vol. 31 ›› Issue (18) : 35-38. DOI: 10.16460/j.issn1008-9969.2024.18.035

Missing data in patient-reported outcomes in clinical studies and its solutions

  • SHI Chen1, YAN Ze-lin1, MA Jia-jun1, LI Xin-xu2, OU Chun-quan1
Author information +
History +

Abstract

Objective To explore missing data in patient-reported outcomes (PRO) and the solutions, and to provide references for reducing the impact of missing data in PRO as much as possible. Methods Relevant literatures at home and abroad were searched, and missing data in PRO were summarized from the perspective of causes and influences of data missing, feasible preventive measures, handling of missing data, and standardized reporting. Results Adequate understanding of the causes and serious impacts of missing data, rigorous study design, and standardized implementation procedures can reduce the risk of data missing in PRO. Reasonable processing and analysis of unavoidable missing data and transparent reporting were beneficial to drawing credible conclusions. Conclusion With the continuous development of scientific research, PRO data should be used more rationally and effectively.

Key words

patient-reported outcomes / missing data / scale / clinical study

Cite this article

Download Citations
SHI Chen, YAN Ze-lin, MA Jia-jun, LI Xin-xu, OU Chun-quan. Missing data in patient-reported outcomes in clinical studies and its solutions[J]. Journal of Nursing. 2024, 31(18): 35-38 https://doi.org/10.16460/j.issn1008-9969.2024.18.035

References

[1] 国家药品监督管理局药品审评中心.患者报告结局在药物临床研发中应用的指导原则(试行)[EB/OL].[2024-03-25].https://www.cde.org.cn/zdyz/domesticinfopage?zdyzIdCODE=8a900c1173e7aaf72ea3724796cebbeb.
[2] 周慧, 姚弥, 陈杰, 等. 《临床试验方案纳入患者报告结局的指南-扩展声明》解读[J]. 中国新药杂志, 2021,30(14):1296-1301.
[3] Palmer MJ, Mercieca-Bebber R, King M, et al.A systematic review and development of a classification framework for factors associated with missing patient-reported outcome data[J]. Clin Trials,2018,15(1):95-106.DOI:10.1177/1740774517741113.
[4] Rombach I,Gray AM, Jenkinson C, et al.Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level[J]. BMC Med Res Methodol,2018,18(1):87.DOI:10.1186/s12874-018-0542-6.
[5] 念家云. 疏肝健脾颗粒治疗乳腺癌癌因性疲乏的临床研究[D]. 北京:北京中医药大学, 2017.
[6] 李平. 探讨甲亢患者人格特征、中医体质关系并观察其饮食护理的效果[D]. 哈尔滨:黑龙江中医药大学, 2022.DOI:10.27127/d.cnki.ghlzu.2021.000474.
[7] Carpenter JR, Smuk M.Missing data: a statistical framework for practice[J]. Biom J, 2021,63(5):915-947.DOI:10.1002/bimj.202000196.
[8] Little RJ, D’Agostino R, Cohen ML, et al. The prevention and treatment of missing data in clinical trials[J]. N Engl J Med,2012,367(14):1355-1360.DOI:10.1056/NEJMsr1203730.
[9] Stang A.Nonresponse research--an underdeveloped field in epidemiology[J]. Eur J Epidemiol, 2003,18(10):929-931.DOI:10.1023/a:1025877501423.
[10] Zhao Y.Statistical inference for missing data mechanisms[J]. Stat Med, 2020,39(28):4325-4333.DOI:10.1002/sim.8727.
[11] Mercieca-Bebber R, Palmer MJ, Brundage M, et al.Design, implementation and reporting strategies to reduce the instance and impact of missing patient-reported outcome (PRO) data: a systematic review[J]. BMJ Open, 2016,6(6):e10938.DOI:10.1136/bmjopen-2015-010938.
[12] Bell ML, Floden L, Rabe BA, et al.Analytical approaches and estimands to take account of missing patient-reported data in longitudinal studies[J]. Patient Relat Outcome Meas, 2019(10):129-140.DOI:10.2147/PROM.S178963.
[13] Bell ML, Fairclough DL.Practical and statistical issues in missing data for longitudinal patient-reported outcomes[J]. Stat Methods Med Res, 2014,23(5):440-459.DOI:10.1177/0962280213476378.
[14] Li T, Hutfless S, Scharfstein DO, et al.Standards should be applied in the prevention and handling of missing data for patient-centered outcomes research: a systematic review and expert consensus[J]. J Clin Epidemiol, 2014,67(1):15-32.DOI:10.1016/j.jclinepi.2013.08.013.
[15] Wehrlen L, Krumlauf M, Ness E, et al.Systematic collection of patient reported outcome research data: a checklist for clinical research professionals[J]. Contemp Clin Trials, 2016(48):21-29.DOI:10.1016/j.cct.2016.03.005.
[16] Crossnohere NL, Anderson N, Baumhauer J, et al.A framework for implementing patient-reported outcomes in clinical care:the PROTEUS-practice guide[J].Nature Medicine, 2024,30(6):1519-1520.DOI:10.1038/s41591-024-02909-8.
[17] Peyre H, Leplège A,Coste J.Missing data methods for dealing with missing items in quality of life questionnaires. A comparison by simulation of personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques applied to the SF-36 in the French 2003 decennial health survey[J]. Qual Life Res, 2011,20(2):287-300.DOI:10.1007/s11136-010-9740-3.
[18] Blough DK, Ramsey S, Sullivan SD, et al.The impact of using different imputation methods for missing quality of life scores on the estimation of the cost-effectiveness of lung-volume-reduction surgery[J]. Health Econ, 2009,18(1):91-101.DOI:10.1002/hec.1347.
[19] Eekhout I, de Vet HC, Twisk JW, et al. Missing data in a multi-item instrument were best handled by multiple imputation at the item score level[J]. J Clin Epidemiol, 2014,67(3):335-342.DOI:10.1016/j.jclinepi.2013.09.009.
[20] Simons CL, Rivero-Arias O, Yu LM, et al.Multiple imputation to deal with missing EQ-5D-3L data: should we impute individual domains or the actual index?[J]. Qual Life Res,2015,24(4):805-815.DOI:10.1007/s11136-014-0837-y.
[21] Fielding S, Fayers P, Ramsay CR.Analysing randomised controlled trials with missing data: choice of approach affects conclusions[J]. Contemp Clin Trials, 2012,33(3):461-469.DOI:10.1016/j.cct.2011.12.002.
[22] Little RJ, Rubin DB.Statistical analysis with missing data[M]. Hoboken: John Wiley & Sons, 2019.
[23] Donneau AF, Mauer M, Lambert P, et al.Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings[J]. J Biopharm Stat,2015,25(3):570-601.DOI:10.1080/10543406.2014.920864.
[24] Hughes RA, Heron J, Sterne J, et al.Accounting for missing data in statistical analyses: multiple imputation is not always the answer[J]. Int J Epidemiol, 2019,48(4):1294-1304.DOI:10.1093/ije/dyz032.
[25] Kenward MG, Lesaffre E, Molenberghs G.An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random[J]. Biometrics, 1994,50(4):945-953.
[26] Doidge JC.Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random[J]. Stat Methods Med Res, 2018,27(2):352-363.DOI:10.1177/0962280216628902.
[27] Molenberghs G, Thijs H,Jansen I,et al.Analyzing incomplete longitudinal clinical trial data[J]. Biostatistics, 2004,5(3):445-464.DOI:10.1093/biostatistics/5.3.445.
[28] Khan T, Khalid M, Dunford B, et al.Incomplete reporting of patient-reported outcomes in multiple sclerosis: a meta-epidemiological study of randomized controlled trials[J]. Mult Scler Relat Disord, 2022(63):103819. DOI:10.1016/j.msard.2022.103819.
[29] Fayers PM, Machin D.Quality of life: the assessment, analysis and interpretation of patient-reported outcomes[M]. Hoboken: John wiley & sons, 2013.
[30] Calvert M, Blazeby J, Altman DG, et al.Reporting of patient-reported outcomes in randomized trials: the CONSORT PRO extension[J]. JAMA, 2013,309(8):814-822.DOI:10.1001/jama.2013.879.
[31] Friedlander M, Mercieca-Bebber RL, King MT.Patient-reported outcomes (PRO) in ovarian cancer clinical trials-lost opportunities and lessons learned[J]. Ann Oncol, 2016,27(Suppl 1):i66-i71.DOI:10.1093/annonc/mdw080.
[32] Krepper D, Giesinger JM, Dirven L, et al.Information about missing patient-reported outcome data in breast cancer trials is frequently not documented: a scoping review[J]. J Clin Epidemiol, 2023(162):1-9.DOI:https://doi.org/10.1016/j.jclinepi.2023.07.012.
PDF(845 KB)

Accesses

Citation

Detail

Sections
Recommended

/