以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (24): 51-56.doi: 10.16460/j.issn1008-9969.2024.24.051

• 循证护理 • 上一篇    下一篇

髋部骨折患者术后30天死亡风险预测模型的范围综述

王月1a, 刘国庆2, 牛聪影1b, 张振伟1c, 孙建1d, 褚友艾1a, 秦寒枝1c   

  1. 1.中国科学技术大学附属第一医院 a.骨科; b.神经内科; c. 护理部; d. 急诊ICU, 安徽 合肥 230001;
    2.天津市第一中心医院 胃肠外科, 天津 300380
  • 收稿日期:2024-04-23 出版日期:2024-12-25 发布日期:2025-01-09
  • 通讯作者: 秦寒枝(1973-),女,安徽合肥人,本科学历,副主任护师,硕士研究生导师。E-mail:qinhanzhi@163.com
  • 作者简介:王月(1996-),女,安徽合肥人,硕士,护士。

Risk prediction models of 30-day mortality after surgery in patients with hip fractures: a scoping review

WANG Yue1a, LIU Guo-qing2, NIU Cong-ying1b, ZHANG Zhen-wei1c, SUN Jian1d, CHU You-ai1a, QIN Han-zhi1c   

  1. 1a. Dept. of Orthopedics; 1b. Dept. of Neurology; 1c. Dept. of Nursing Administration; 1d. Dept. of Emergency ICU, the First Affiliated Hospital of USTC, Hefei 230036, China;
    2. Dept. of Gastrointestinal Surgery, Tianjin First Central Hospital, Tianjin 300380, China
  • Received:2024-04-23 Online:2024-12-25 Published:2025-01-09

摘要: 目的 对髋部骨折患者术后30 d死亡风险预测模型进行范围综述,为临床护理实践及研究提供借鉴。方法 聚焦髋部骨折患者术后30 d死亡风险预测模型,系统检索PubMed、Embase、Web of Science、中国知网、万方数据库、中国生物医学文献数据库及维普中文期刊服务平台等,筛选相关中英文文献,提取数据。结果 共纳入21篇文献,髋部骨折患者术后30 d死亡率高达4.73%~33.76%,模型的总体预测效能良好,但整体偏倚风险较高。结论 髋部骨折患者术后30 d死亡风险预测模型研究处于发展阶段,未来以期开发和/或验证低偏倚风险和高适应性的预测模型,指导临床实践。

关键词: 髋部骨折, 死亡风险, 预测模型, 范围综述

Abstract: Objective To conduct a scoping review of models for predicting the risk of 30-day mortality after surgery in patients with hip fractures and providing reference for clinical nursing practice and research. Methods Focusing on the risk prediction models for 30-day mortality after surgery in patients with hip fractures, we systematically searched and screened relevant Chinese and English literature in PubMed, Embase, Web of Science, CNKI, Wanfang Data, SinoMed, VIP, etc., and extracted the data. Results A total of 21 articles were collected, and 30-day mortality after surgery in patients with hip fractures ranged from 4.73% to 33.76%. The overall prediction efficiency of the model was good, but the overall bias risk was high. Conclusion The research on risk prediction models for 30-day mortality after surgery in patients with hip fractures is in the development stage. In the future, it is expected to develop and/or verify the prediction model with low bias risk and high adaptability to guide clinical practice.

Key words: hip fractures, death risk, predictive models, scoping review

中图分类号: 

  • R473.6
[1] Kates SL, Blake D, Bingham KW, et al.Comparison of an organized geriatric fracture program to United States government data[J]. Geriatr Orthop Surg Rehabil, 2010,1(1): 15-21.DOI: 10.1177/2151458510382231.
[2] Xu Z, Pan J, Qian Y.Home-based physical therapy for older adults after hip fracture[J]. JAMA, 2020,323(4): 378.DOI: 10.1001/jama.2019.19269.
[3] Dhanwal DK, Dennison EM, Harvey NC, et al.Epidemiology of hip fracture: worldwide geographic variation[J]. Indian J Orthop, 2011,45(1): 15-22.DOI: 10.4103/0019-5413.73656.
[4] Gullberg B, Johnell O, Kanis JA.World-wide projections for hip fracture[J]. Osteoporos Int, 1997, 7(5):407-413.DOI: 10.1007/pl00004148.
[5] Chesser T, Inman D, Johansen A, et al.Hip fracture systems-European experience[J]. OTA Int, 2020, 3(1): e050.DOI: 10.1097/OI9.0000000000000050.
[6] Haentjens P, Magaziner J, Colon-Emeric CS, et al.Meta-analysis: excess mortality after hip fracture among older women and men[J]. Ann Intern Med, 2010,152(6): 380-390.DOI: 10.7326/0003-4819-152-6-201003160-00008.
[7] Guzon-Illescas O, Perez FE, Crespi VN, et al.Mortality after osteoporotic hip fracture: incidence, trends, and associated factors[J]. J Orthop Surg Res,2019,14(1):203.DOI: 10.1186/s13018-019-1226-6.
[8] Haugan K, Klaksvik J, Foss O A.30-day mortality in patients after hip fracture surgery: a comparison of the Charlson Comorbidity Index score and ASA score used in two prediction models[J]. Injury,2021,52(8): 2379-2383.DOI: https://doi.org/10.1016/j.injury.2021.02.004.
[9] 王薇, 周演铃, 薛文萍, 等. 老年髋部骨折患者衰弱评估工具的范围综述[J]. 护理学报, 2024,31(4): 42-47.DOI: 10.16460/j.issn1008-9969.2024.04.042.
[10] Sheehan KJ, Sobolev B, Chudyk A, et al.Patient and system factors of mortality after hip fracture: a scoping review[J]. BMC Musculoskelet Disord, 2016(17): 166.DOI: 10.1186/s12891-016-1018-7.
[11] Lex JR, Di Michele J, Koucheki R, et al.Artificial intelligence for hip fracture detection and outcome prediction: a systematic review and Meta-analysis[J].JAMA Netw Open, 2023, 6(3): e233391.DOI: 10.1001/jamanetworkopen.2023.3391.
[12] 陈香萍, 张奕, 庄一渝, 等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744.DOI:10.7507/1672-2531.201910087.
[13] 靳永俊, 肖鹏, 朱旭, 等. 髋部骨折手术预后的预测:Nottingham髋部骨折评分的独立验证和重新校准[J]. 中华创伤骨科杂志,2023,25(9): 777-784. DOI:10.3760/cma.j.cn115530-20230718-00003.
[14] Blanco JF, Da CC, Pablos-Hernandez C, et al.30-day mortality after hip fracture surgery: influence of postoperative factors[J]. PLoS One,2021,16(2):e0246963.DOI: 10.1371/journal.pone.0246963.
[15] Harris A, Trickey AW, Eddington HS, et al.A tool to estimate risk of 30-day mortality and complications after hip fracture surgery: accurate enough for some but not all purposes? A study from the ACS-NSQIP database[J]. Clin Orthop Relat Res, 2022, 480(12):2335-2346.DOI:10.1097/CORR.0000000000002294.
[16] Debaun MR, Chavez G, Fithian A, et al.Artificial neural networks predict 30-day mortality after hip fracture: insights from machine learning[J].J Am Acad Orthop Surg, 2021, 29(22): 977.DOI: 10.5435/JAAOS-D-20-00429.
[17] Forssten MP, Cao Y, Trivedi DJ, et al.Developing and validating a scoring system for measuring frailty in patients with hip fracture: a novel model for predicting short-term postoperative mortality[J]. Trauma Surg Acute Care Open, 2022, 7(1): e000962.DOI: 10.1136/tsaco-2022-000962.
[18] Maxwell MJ, Moran CG, Moppett IK.Development and validation of a preoperative scoring system to predict 30 day mortality in patients undergoing hip fracture surgery[J]. Br J Anaesth,2008,101(4):511-517.DOI:10.1093/bja/aen236.
[19] Goubar A, Martin FC, Sackley C, et al.Development and validation of multivariable prediction models for in-hospital death, 30-day death, and change in residence after hip fracture surgery and the "Stratify-Hip" algorithm[J]. J Gerontol A Biol Sci Med Sci, 2023, 78(9): 1659-1668.DOI: 10.1093/gerona/glad053.
[20] Van de Ree CL, Gosens T, Van der Veen AH, et al. Development and validation of the Brabant Hip Fracture Score for 30-day and 1-year mortality[J]. Hip Int, 2020, 30(3): 354-362.DOI: 10.1177/1120700019836962.
[21] Trevisan C, Gallinari G, Carbone A, et al.Efficiently stratifying mid-term death risk in femoral fractures in the elderly: introducing the ASAgeCoGeCC Score[J]. Osteoporos Int, 2021, 32(10): 2023-2031.DOI: 10.1007/s00198-021-05932-4.
[22] Sanz-Reig J,Mas-Martinez J,Ojeda-Thies C,et al.Emergency department prediction model for 30-day mortality after hip fracture:the Spanish National Hip Fracture Registry (RNFC) cohort[J]. Hip Int, 2024, 34(2): 290-297.DOI: 10.1177/11207000231197818.
[23] Wesdorp MA, Moerman S, Vochteloo A, et al.External validation of the Almelo Hip Fracture Score, a prediction model for early mortality following hip fracture surgery[J]. Eur J Trauma Emerg Surg, 2022, 48(3): 1871-1877.DOI: 10.1007/s00068-021-01619-x.
[24] Yenidogan B, Pathak S, Geerdink J, et al.Multimodal machine learning for 30-days post-operative mortality prediction of elderly hip fracture patients[C]. IEEE, 2021. DOI: 10.1109/ICDMW53433.2021.00068.
[25] Karres J, Kieviet N, Eerenberg JP, et al.Predicting early mortality after hip fracture surgery: the hip fracture estimator of mortality amsterdam[J]. J Orthop Trauma, 2018, 32(1):27-33.DOI: 10.1097/BOT.0000000000001025.
[26] Marufu TC, White SM, Griffiths R, et al.Prediction of 30-day mortality after hip fracture surgery by the Nottingham Hip Fracture Score and the Surgical Outcome Risk Tool[J]. Anaesthesia, 2016,71(5):515-521.DOI:10.1111/anae.13418.
[27] Nijmeijer WS, Folbert EC, Vermeer M, et al.Prediction of early mortality following hip fracture surgery in frail elderly: the Almelo Hip Fracture Score (AHFS)[J]. Injury, 2016, 47(10):2138-2143.DOI:10.1016/j.injury.2016.07.022.
[28] Forni C, Gazineo D, D'Alessandro F, et al. Predictive factors for thirty day mortality in geriatric patients with hip fractures: a prospective study[J]. Int Orthop, 2019, 43(2): 275-281.DOI: 10.1007/s00264-018-4057-x.
[29] Zaib J,Madni A,Saad AM.Predictive value of comprehensive geriatric assessment scores for mortality in patients with hip fracture: a retrospective cohort study[J]. Cureus, 2023, 15(9): e45070.DOI: 10.7759/cureus.45070.
[30] Lu Y, Chen W, Guo Y, et al.Risk factors for short-term mortality in elderly hip fracture patients with complicated heart failure in the ICU: a MIMIC-IV database analysis using nomogram[J]. J Orthop Surg Res, 2023, 18(1): 829.DOI: 10.1186/s13018-023-04258-7.
[31] Dawe EJ, Lindisfarne E, Singh T, et al.Sernbo score predicts survival after intracapsular hip fracture in the elderly[J]. Ann R Coll Surg Engl, 2013, 95(1): 29-33.DOI: 10.1308/003588413X13511609954653.
[32] Nijmeijer WS, Voorthuis BJ, Groothuis-Oudshoorn C, et al.The prediction of early mortality following hip fracture surgery in patients aged 90 years and older: the Almelo Hip Fracture Score 90(AHFS(90))[J]. Osteoporos Int, 2023, 34(5): 867-877.DOI: 10.1007/s00198-023-06696-9.
[33] Khan MA, Hossain FS, Ahmed I, et al.Predictors of early mortality after hip fracture surgery[J]. Int Orthop, 2013, 37(11): 2119-2124.DOI: 10.1007/s00264-013-2068-1.
[34] Loggers S, Willems HC, Van Balen R, et al.Evaluation of quality of life after nonoperative or operative management of proximal femoral fractures in frail institutionalized patients: the FRAIL-HIP study[J]. JAMA Surg, 2022, 157(5): 424-434.DOI: 10.1001/jamasurg.2022.0089.
[35] 肖万莲, 李娜, 陈晓玲, 等. 集束化护理在高龄髋部骨折患者围手术期的应用[J]. 中华护理杂志, 2023, 58(22): 2734-2740. DOI:10.3761/j.issn.0254-1769.2023.22.007.
[36] 梁小芹, 鲁雪梅, 刘均娥, 等. 共管照护模式在老年髋部骨折患者中的研究进展[J]. 中华护理杂志,2020,55(10): 1484-1489. DOI:10.3761/j.issn.0254-1769.2020.10.007.
[37] Moppett IK, Parker M, Griffiths R, et al.Nottingham Hip Fracture Score: longitudinal and multi-assessment[J]. Br J Anaesth, 2012, 109(4): 546-550.DOI: 10.1093/bja/aes187.
[38] Nijmeijer WS, Folbert EC, Vermeer M, et al.Prediction of early mortality following hip fracture surgery in frail elderly: the Almelo Hip Fracture Score (AHFS)[J]. Injury, 2016,47(10):2138-2143.DOI:10.1016/j.injury.2016.07.022.
[1] 李垚, 陈小敏, 夏敏, 吴茜, 张琳, 陈叡喆, 葛莉丽, 吴逸梅. 肿瘤患者衰弱评估工具应用的范围综述[J]. 护理学报, 2025, 32(4): 48-52.
[2] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[3] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[4] 陈恩琳, 莫丰菱, 庄泽明, 张明哲, 周佳坤, 黄丽芳, 纪龙飞, 张莉芳. 脑卒中单侧空间忽略评估工具的范围综述[J]. 护理学报, 2025, 32(3): 43-49.
[5] 朱天顺, 朱可可, 薛会元, 焦聪聪, 魏长慧, 王贺. 信息框架效应理论在健康管理领域应用的范围综述[J]. 护理学报, 2025, 32(2): 44-49.
[6] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[7] 李珂, 贺雨琼, 李雨蔚, 常颖. 脑卒中患者跌倒恐惧干预研究的范围综述[J]. 护理学报, 2025, 32(1): 50-55.
[8] 李丁丁, 王帅有, 朱杉杉, 郭鑫, 张会敏, 王宏茹, 潘勤. 脑卒中患者支持性照护需求评估工具的范围综述[J]. 护理学报, 2024, 31(9): 48-53.
[9] 郭俊晨, 刘超毅, 戴云云, 蒋思珊, 杨索, 谌永毅. 虚拟现实技术在生命末期患者中应用的范围综述[J]. 护理学报, 2024, 31(7): 40-45.
[10] 梅紫琦, 金胜姬, 李玮彤, 柏亚妹, 宋玉磊, 李伊婷, 王萌, 徐桂华. 智能机器人在护理健康教育领域中应用的范围综述[J]. 护理学报, 2024, 31(7): 57-62.
[11] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[12] 郑晓婷, 田霞, 王峥, 肖文莉. King达标理论在慢性病家庭护理中应用的范围综述[J]. 护理学报, 2024, 31(5): 56-60.
[13] 王薇, 周演铃, 薛文萍, 张淋淋, 林书球. 老年髋部骨折患者衰弱评估工具的范围综述[J]. 护理学报, 2024, 31(4): 42-47.
[14] 李佳萍, 朱云霞, 朱宇. 乳腺癌化疗患者症状群的范围综述[J]. 护理学报, 2024, 31(4): 60-64.
[15] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!