以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (24): 44-50.doi: 10.16460/j.issn1008-9969.2024.24.044

• 循证护理 • 上一篇    下一篇

基于传感器技术的智能康复设备在脑卒中患者步态康复应用效果的Meta分析

周春香1, 饶媛2, 崔梦娇3, 商芷颖4, 张天岚5, 裘奚晨卉6, 秦艳萍1   

  1. 1.南京市溧水区人民医院 神经外科, 江苏 南京 211200;
    2.湖南省女子强制隔离戒毒所, 湖南 长沙 410208;
    3.南京鼓楼医院 急诊科, 江苏 南京 210000;
    4.南京医科大学护理学院, 江苏 南京 211266;
    5.江苏大学附属鼓楼临床医学院, 江苏 南京 210000;
    6.深圳大学医学部护理学院, 广东 深圳 518055
  • 收稿日期:2024-08-04 出版日期:2024-12-25 发布日期:2025-01-09
  • 通讯作者: 秦艳萍(1988-),女,江苏南京人,本科学历,主管护师,护士长。Email:13951741074@163.com
  • 作者简介:周春香(1982-),女,江苏南京人,本科学历,主管护师,护士长。
  • 基金资助:
    2024年“江苏科技智库计划(青年)项目”(JSKX24028);国家卫生健康委医院管理研究所“重症智能护理机器人系统研发”项目协作单位课题(HLJORS_2023A02);南京大学现代医院管理与发展研究所课题(NDYG2021017)

Application effect of sensor technology-based intelligent devices in gait rehabilitation of stroke patients: a Meta-analysis

ZHOU Chun-xiang1, RAO Yuan2, CUI Meng-jiao3, SHANG Zhi-ying4, ZHANG Tian-lan5, QIU Xi-chenhui6, QIN Yan-ping1   

  1. 1. Dept. of Neurological Surgery, Lishui District People's Hospital, Nanjing 211200, China;
    2. Female Drug Rehab Center of Hunan Province, Changsha 410208, China;
    3. Dept. of Emergency, Nanjing Drum Tower Hospital, Nanjing 210000, China;
    4. School of Nursing, Nanjing Medical University, Nanjing 211266, China;
    5. Drum Tower Clinical Medical College Affiliated to Jiangsu University, Nanjing 210000, China;
    6. School of Nursing, Shenzhen University Medical School, Shenzhen 518055, China
  • Received:2024-08-04 Online:2024-12-25 Published:2025-01-09

摘要: 目的 本文旨在评价具备传感技术的智能康复设备对脑卒中患者步态康复的干预效果,以期为卒中患者的临床护理提供依据。方法 计算机系统检索中国知网、维普、万方、PubMed、Web of Science、CINAHL、Cochrane Library、Embase 8个中英文数据库中应用具备传感技术的智能康复设备对脑卒中患者步态康复的随机对照试验,检索时限为建库至 2024年8月,获取原始文献经EndNote软件去重后由2名经过循证护理培训的研究者独立筛选文献、提取资料、评价纳入研究的偏倚风险后,采用RevMan 5.4软件进行统计分析。结果 共纳入10篇原始研究,总计329例脑卒中患者,Meta分析结果显示,传感器技术有助于脑卒中患者的步态康复,可改善患者平衡控制能力[SMD=0.74,95%CI(0.23,1.25),P<0.05]、行走能力[SMD=0.67,95%CI(0.26,1.09),P<0.05]、步态功能[SMD=0.47,95%CI(0.15,0.79),P<0.05]。但对于步行速率的影响差异无统计学意义[SMD=1.13,95%CI(-0.31,2.57),P=0.12]。结论 传感器技术对于脑卒中患者步态康复有益,包括平衡控制能力、步行能力和步态功能,但对于步行速率的价值尚不明确,未来仍需进行高质量的研究验证以上结论。

关键词: 传感器, 脑卒中, 康复, 护理, Meta分析

Abstract: Objective To evaluate the intervention effect of sensor technology-based intelligent devices on gait rehabilitation in stroke patients, and to provide evidence for clinical nursing of stroke patients. Methods Randomized controlled trials (RCTs) on sensor technology-based intelligent devices for gait rehabilitation in stroke patients were retrieved from CNKI, VIP, Wanfang, PubMed, Web of Science, CINAHL, Cochrane Library, and Embase and the retrieval time spanned from the inception to August 2024. After deduplication using Endnote software, two researchers with evidence-based nursing training screened the literature, extracted the data, and assessed the risk of bias in included studies independently. Statistical analysis was conducted using RevMan 5.4 software. Results A total of 10 original studies were included, with 329 stroke patients. Meta-analysis Results showed that sensor technology was conducive to gait rehabilitation of stroke patients, and could improve patients' balance control ability[SMD=0.74, 95%CI(0.23, 1.25), P<0.05], walking ability[SMD=0.67, 95%CI(0.26, 1.09), P<0.05], gait function [SMD=0.47, 95%CI (0.15, 0.79), P<0.05]. However, there was no significant difference in the impact on walking rate [SMD=1.13, 95%CI (-0.31, 2.57), P=0.12]. Conclusion Sensor technology facilitates gait rehabilitation in stroke patients, including balance control, walking ability, and gait function. However, the impact on gait speed remains unclear, requiring further high-quality research to verify the conclusion.

Key words: sensor, stroke, rehabilitation, nursing, Meta-analysis

中图分类号: 

  • R473.74
[1] Johnson CO, Nguyen M, Roth GA,et al.Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of disease study 2016[J].Lancet Neurol,2019,18(5).439-458.DOI:10.1016/S1474-4422(19)30034-1.
[2] Mehrholz J, Thomas S, Elsner B.Treadmill training and body weight support for walking after stroke[J].Cochrane Database Syst,2017, 8(8):CD002840.DOI:10.1002/14651858.CD002840.pub4.
[3] Van Criekinge T, Heremans C, Burridge J, et al.Standardized measurement of balance and mobility post-stroke: consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable[J]. Neurorehabil Neural Repair,2024,38(1):41-51. DOI:10.1177/15459683231209154.
[4] Pournajaf S, Goffredo M, Agosti M,et al.Italian study group on implementation of stroke care (ISC Study). Community ambulation of stroke survivors at 6 months follow-up: an observational study on sociodemographic and sub-acute clinical indicators[J]. Eur J Phys Rehabil Med, 2019,55(4):433-441. DOI:10.23736/S1973-9087.18.05489-8.
[5] Huang X, Xue Y, Ren S, et al.Sensor-based wearable systems for monitoring humanmotion and posture: a review[J]. Sensors (Basel),2023 ,23(22):9047. DOI:10.3390/s23229047.
[6] Peters DM, O'Brien ES, Kamrud KE, et al. Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review[J]. J Neuroeng Rehabil,2021,18(1):67. DOI: 10.1186/s12984-021-00863-x.
[7] 胡雁. 循证护理学[M].北京:人民卫生出版社,2012:112.
[8] Wright A, Stone K, Martinelli L,et al.Effect of combined home-based, overground robotic-assisted gait training and usual physiotherapy on clinical functional outcomes in people with chronic stroke: a randomized controlled trial[J]. Clin Rehabil, 2021,35(6):882-893. DOI:10.1177/0269215520984133.
[9] Yoo D, Son Y, Kim D, et al.Technology-assisted ankle rehabilitation improves balance and gait performance in stroke survivors: a randomized controlled study with 1-month follow-up[J]. IEEE Trans Neural Syst Rehabil Eng, 2018,26(12):2315-2323.DOI:10.1109/TNSRE.2018.2879783.
[10] Yoo D, Kim DH, Seo KH, et al.The effects of technology-assisted ankle rehabilitation on balance control in stroke survivors[J]. IEEE Trans Neural Syst Rehabil Eng, 2019,27(9):1817-1823.DOI:10.1109/TNSRE.2019.2934930.
[11] Ghedira M, Albertsen, IM, Mardale V, et al. Wireless, accelerometry-triggered functional electrical stimulation of the peroneal nerve in spastic paresis: a randomized, controlled pilot study[J]. Assist Technol, 2017,29(2):99-105.DOI:10.1080/10400435.2016.1214933.
[12] Ribeiro TS,Silva E,Silva I, et al.Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: a randomized controlled clinical trial[J]. Gait Posture, 2017(54):229-235. DOI:10.1016/j.gaitpost.2017.03.00.
[13] Ribeiro TS, Gomesde S, Regalado I,et al.Effects of load addition during gait training on weight-bearing and temporal asymmetry after stroke: a randomized clinical trial[J]. Am J Phys Med Rehabil, 2020, 99(3):250-256.DOI:10.1097/PHM.0000000000001314.
[14] Zhang H, Li X, Gong Y, et al.Three-dimensional gait analysis and semg measures for robotic-assisted gait training in subacute stroke: a randomized controlled trial[J]. Biomed Res Int, 2023(2023):7563802. DOI:10.1155/2023/7563802.
[15] 蒋祎萌,董静.下肢康复机器人训练在急性脑卒中患者康复治疗中的应用效果[J]. 养生大世界,2021(6):197.
[16] Lee YH, Ko LW, Hsu CY, et al.Therapeutic effects of robotic-exoskeleton-assisted gait rehabilitation and predictive factors of significant improvements in stroke patients: a randomized controlled trial[J].Bioengineering(Basel), 2023,10(5):585.DOI:10.3390/bioengineering10050585.
[17] Zhang Y, Zhao W, Wan C, et al.Exoskeleton rehabilitation robot training for balance and lower limb function in sub-acute stroke patients: a pilot, randomized controlled trial. J Neuroeng Rehabil[J]. 2024,21(1):98.DOI:10.1186/s12984-024-01391-0.
[18] Beyaert C, Vasa R, Frykberg GE.Gait post-stroke: Pathophysiology and rehabilitation strategies[J].Neurophysiol Clin,2015,45(4-5):335-355.DOI:10.1016/j.neucli.2015.09.005.
[19] Liang M,Wei Z,Xie R,et al.A Meta-analysis of the effectiveness of virtual reality training for improving balance and walking after a stroke[J]. Chin J Phys Med Rehabil,2020,42(7):632-639.DOI:10.2196/31051.
[20] Tao Q, Liu S, Zhang J,et al.Clinical applications of smart wearable sensors[J]. iScience,2023 ,26(9):107485. DOI:10.1016/j.isci.2023.107485.
[21] Kim WS,Cho S,Ku J,et al.Clinical application of virtual reality for upper limb motor rehabilitation in stroke: review of technologies and clinical evidence[J]. J Clin Med,2020,9(10):3369.DOI:10.3390/jcm9103369.
[22] Jakob I, Kollreider A, Germanotta M,et al.Robotic and sensor technology for upper limb rehabilitation[J].PM R, 2018,10(9 Suppl 2):S189-S197. DOI:10.1016/j.pmrj.2018.07.011.
[23] 周雯露,余姜璇,王俊杰,等.完全沉浸式虚拟现实技术对脑卒中患者肢体功能影响的Meta分析[J].中华护理杂志,2023, 58(17):2158-2165. DOI:10.3761/j.issn.0254-1769.2023.17.015.
[24] Einstad MS, Saltvedt I, Lydersen S,et al.Associations between post-stroke motor and cognitive function: a cross-sectional study[J]. BMC Geriatr,2021,21(1):103. DOI:10.1186/s12877-021-02055-7.
[25] Liang S, Hong ZQ,Cai Q,et al.Effects of robot-assisted gait training on motor performance of lower limb in poststroke survivors: a systematic review with Meta-analysis[J]. Eur Rev Med Pharmacol Sci,2024, 28(3):879-898.DOI:10.26355/eurrev_202402_35325.
[26] Bernhardt J,Godecke E,Johnson L,et al.Early rehabilitation after stroke[J].Curr Opin Neurol,2017,30(1):48-54.DOI:10.1097/WCO.0000000000000404.
[27] Zhang BH,Li D,Liu Y, et al.Virtual reality for limb motor function,balance,gait,cognition and daily function of stroke patients:a systematic review and Meta-analysis[J]. J Adv Nurs,2021,77(8):3255-3273.DOI:10.1111/jan.14800.
[28] Koch G,Bonnì S,Casula EP,et al.Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke:a randomized clinical trial[J]. JAMA Neurol,2019,76(2):170-178.DOI:10.1001/jamaneurol.2018.3639.
[29] Leddy JJ,Cox JL,Baker JG,et al.Exercise treatment for post concussion syndrome:a pilot study of changes in functional magnetic resonance imaging activation, physiology, and symptoms[J].J Head Trauma Rehabil,2013,28(4):241-249.DOI:10.1097/HTR.0b013e31826da964.
[30] Gordt K, Gerhardy T, Najafi B, et al.Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: a systematic review and Meta-analysis of randomized controlled trials[J]. Gerontology,2018,64(1):74-89. DOI:10.1159/000481454.
[31] Rose DK,Nadeau SE,Wu SS,et al.Locomotor training and strength and balance exercises for walking recovery after stroke: response to number of training sessions[J]. Phys Ther,2017,97(11):1066-1074.DOI:10.1093/ptj/pzx079.
[32] Cho KH, Park SJ.Effects of joint mobilization and stretching on the range of motion for ankle joint and spatiotemporal gait variables in stroke patients[J]. J Stroke Cerebrovasc Dis,2020, 29(8):104933.DOI:10.1016/j.jstrokecerebrovasdis.2020.104933.
[1] 张静, 彭焕椽, 陈佳, 鲁永锦, 刘克玄, 侯晓敏. 成人体外循环心脏手术患者预防手术部位感染的最佳证据总结[J]. 护理学报, 2025, 32(4): 41-47.
[2] 刘璐, 朱钰, 曹义, 张华, 彭玉娜. 腹腔热灌注化疗患者术中实施不同目标体温管理的效果观察[J]. 护理学报, 2025, 32(4): 59-63.
[3] 李疆伟, 王树君, 李长仔, 胡宝山, 焦桂梅, 张卫红. 基于压力应对理论的护理干预对结直肠癌术后永久性肠造口患者心理压力、负性情绪及自我管理的影响[J]. 护理学报, 2025, 32(4): 64-69.
[4] 龚祖华, 孙丽, 谭璇, 张悦, 施丹, 程娟娟. 肝胆外科术后患者基础体征采集-比对-识别隐匿型病情变化的效果观察[J]. 护理学报, 2025, 32(4): 74-78.
[5] 李苗苗, 熊莉娟, 齐磊, 李敏, 向御婷. 基于Ridit分析法和秩和比法的疾病诊断相关分组在护理绩效管理中的应用[J]. 护理学报, 2025, 32(3): 22-26.
[6] 焦雪萍, 王志稳, 韩舒羽. ICU老年患者躁动行为的干预研究进展[J]. 护理学报, 2025, 32(3): 38-42.
[7] 陈恩琳, 莫丰菱, 庄泽明, 张明哲, 周佳坤, 黄丽芳, 纪龙飞, 张莉芳. 脑卒中单侧空间忽略评估工具的范围综述[J]. 护理学报, 2025, 32(3): 43-49.
[8] 李若雨, 刘鑫, 林萍, 陈丹, 林桦. 出院患者用药安全管理的最佳证据总结[J]. 护理学报, 2025, 32(3): 50-55.
[9] 杨小娟, 毛孝容, 王静, 江华, 李蓉, 樊宇, 文青, 李林章, 陈晓容. 成人重度烧伤患者早期肠内营养管理的最佳证据总结[J]. 护理学报, 2025, 32(3): 56-61.
[10] 朱天顺, 朱可可, 薛会元, 焦聪聪, 魏长慧, 王贺. 信息框架效应理论在健康管理领域应用的范围综述[J]. 护理学报, 2025, 32(2): 44-49.
[11] 刘硕怡, 熊莉娟, 李凌, 王玉梅, 何嘉, 李鑫, 袁淑蕾, 郭雪琴, 王暘婧, 张慧娟. 老年住院患者衰弱预防及管理临床实践指南的质量评价及内容分析[J]. 护理学报, 2025, 32(2): 50-55.
[12] 闫亚铃, 乐美妮, 姚桃琴, 王雪莲, 姜建玲, 辛艺. 老年胃肠肿瘤患者围手术期衰弱管理方案的构建[J]. 护理学报, 2025, 32(2): 74-78.
[13] 顾妍鑫, 刘丽, 胡惠惠, 周芳, 杨怡, 高锐, 王培双. 以核心能力为导向的麻醉护理硕士专业学位研究生临床实践培养方案的构建[J]. 护理学报, 2025, 32(1): 7-12.
[14] 孙娟, 李亚莉, 马安娜, 王华, 张会敏. 护理研究生对社区护理实践思政教学体验的质性研究[J]. 护理学报, 2025, 32(1): 19-23.
[15] 李格格, 王婉儿, 蒲江锋, 谢章浩, 杨妞, 黄惠根. 基于熵权-TOPSIS结合RSR法广东省护理人力资源配置评价研究[J]. 护理学报, 2025, 32(1): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!