护理学报 ›› 2024, Vol. 31 ›› Issue (15): 39-45.doi: 10.16460/j.issn1008-9969.2024.15.039
谢珍妮, 刘畅, 史婷奇
摘要: 目的 系统评价医务人员临床决策支持系统应用体验,为临床决策支持系统更好的应用、推广和发展提供参考。方法 计算机检索PubMed、Embase、Medline、Web of Science、The Cochrane Library、万方数据库、维普数据库、中国知网、中国生物医学文献数据库中关于医务人员临床决策支持系统应用体验的质性研究,时限为建库至2024年1月。采用JBI循证卫生保健中心质性研究质量评价标准进行文献质量评价,采用汇集性整合方法对研究结果进行归纳整合。结果 共纳入17篇文献,提炼出74个研究结果,归纳整合为12个类别,综合得出4个整合结果:医务人员技术适应性差,内部支持不足;系统性能有待完善;医务人员肯定和认同临床决策支持系统的价值和意义;临床决策支持系统的改进途径。结论 本研究归纳分析了医务人员自身、医院环境及系统3个方面的局限,并展现了医务人员对临床决策支持系统价值和意义的肯定以及临床决策支持系统的改进途径。需加强与医务人员的沟通交流,不断优化系统,并提供专业的教育与培训,促进临床决策支持系统的有效应用。
中图分类号:
[1] Shortliffe EH, Sepúlveda MJ.Clinical decision support in the era of artificial intelligence[J]. JAMA, 2018, 320(21): 2199-2200. DOI:10.1001/jama.2018.17163. [2] Hak F, Guimarães T, Santos M.Towards effective clinical decision support systems: a systematic review[J]. PLoS One, 2022, 17(8): e0272846. DOI:10.1371/journal.pone.0272846. [3] Sariköse S, Senol Çelik S.The effect of clinical decision support systems on patients, nurses, and work environment in ICUs: a systematic review[J]. Comput Inform Nurs, 2024, 42(4): 298-304. DOI:10.1097/CIN.0000000000001107. [4] Kouri A, Yamada J, Lam Shin Cheung J, et al. Do providers use computerized clinical decision support systems? A systematic review and Meta-regression of clinical decision support uptake[J]. Implement Sci, 2022, 17(1):21. DOI:10.1186/s13012-022-01199-3. [5] Chen Z, Liang N, Zhang H, et al.Harnessing the power of clinical decision support systems: challenges and opportunities[J]. Open Heart, 2023, 10(2): e002432. DOI:10.1136/openhrt-2023-002432. [6] Sperl-Hillen J, Crain AL, Wetmore JB, et al.A CKD clinical decision support system: a cluster randomized clinical trial in primary care clinics[J]. Kidney Med, 2024, 6(3): 100777. DOI:10.1016/j.xkme.2023.100777. [7] Wallace H, Wang Q, Botha T, et al.Optimising diagnosis and management of kidney disease: an implementation trial of a clinical decision support system future health today[J]. BMC Nephrol, 2024, 25(1): 57. DOI:10.1186/s12882-024-03489-y. [8] 方园, 周英凤, 李丽, 等. 妊娠期糖尿病非药物管理决策支持系统的构建及应用[J]. 中华护理杂志, 2023, 58(9): 1043-1049. DOI:10.3761/j.issn.0254-1769.2023.09.003. [9] 胡雁, 郝玉芳. 循证护理学[M].2版. 北京:人民卫生出版社, 2018. [10] Lockwood C, Munn Z, Porritt K.Qualitative research synthesis: methodological guidance for systematic reviewers utilizing Meta-aggregation[J].Int J Evid Based Healthc, 2015,13(3):179-187.DOI:10.1097/XEB.0000000000000062. [11] Weber S, Crago EA, Sherwood PR, et al.Practitioner approaches to the integration of clinical decision support system technology in critical care[J]. J Nurs Adm, 2009, 39(11): 465-469. DOI:10.1097/NNA.0b013e3181bd5fc2. [12] Goud R, Van Engen-Verheul M, De Keizer NF, et al. The effect of computerized decision support on barriers to guideline implementation: a qualitative study in outpatient cardiac rehabilitation[J]. Int J Med Inform, 2010, 79(6): 430-437. DOI:10.1016/j.ijmedinf.2010.03.001. [13] Campion TR, Waitman LR, Lorenzi NM, et al.Barriers and facilitators to the use of computer-based intensive insulin therapy[J]. Int J Med Inform, 2011, 80(12): 863-871. DOI:10.1016/j.ijmedinf.2011.10.003. [14] Liberati EG, Ruggiero F, Galuppo L, et al.What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation[J]. Implement Sci, 2017, 12(1):113. DOI:10.1186/s13012-017-0644-2. [15] Cresswell KM, Lee L, Mozaffar H, et al.Sustained user engagement in health information technology: the long road from implementation to system optimization of computerized physician order entry and clinical decision support systems for prescribing in hospitals in England[J]. Health Serv Res, 2017, 52(5):1928-1957.DOI:10.1111/1475-6773.12581. [16] Chung P, Scandlyn J, Dayan PS, et al.Working at the intersection of context, culture, and technology: provider perspectives on antimicrobial stewardship in the emergency department using electronic health record clinical decision support[J]. Am J Infect Control, 2017, 45(11): 1198-1202. DOI:10.1016/j.ajic.2017.06.005. [17] Blanco N, O’Hara LM, Robinson GL, et al. Health care worker perceptions toward computerized clinical decision support tools for Clostridium difficile infection reduction: a qualitative study at 2 hospitals[J]. Am J Infect Control, 2018, 46(10):1160-1166.DOI:10.1016/j.ajic.2018.04.204. [18] Giuliano CA, Binienda J, Kale-Pradhan PB, et al.“I never would have caught that before”: pharmacist perceptions of using clinical decision support for antimicrobial stewardship in the United States[J]. Qual Health Res, 2018, 28(5): 745-755. DOI:10.1177/1049732317750863. [19] Chua AQ, Tang SSL, Lee LW, et al.Psychosocial determinants of physician acceptance toward an antimicrobial stewardship program and its computerized decision support system in an acute care tertiary hospital[J]. J Am Coll Clin Pharm, 2018, 1(1): e1-e8. DOI:10.1002/jac5.1028. [20] Grau LE, Weiss J, O’Leary TK, et al. Electronic decision support for treatment of hospitalized smokers: a qualitative analysis of physicians’ knowledge, attitudes, and practices[J]. Drug Alcohol Depend, 2019(194):296-301. DOI:10.1016/j.drugalcdep.2018.10.006. [21] Melnick ER, Holland WC, Ahmed OM, et al.An integrated web application for decision support and automation of EHR workflow: a case study of current challenges to standards-based messaging and scalability from the EMBED trial[J]. JAMIA Open, 2019, 2(4):434-439. DOI:10.1093/jamiaopen/ooz053. [22] Strohm L, Hehakaya C, Ranschaert ER, et al.Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors[J]. Eur Radiol, 2020, 30(10): 5525-5532. DOI:10.1007/s00330-020-06946-y. [23] Petitgand C, Motulsky A, Denis JL.Investigating the barriers to physician adoption of an artificial intelligence-based decision support system in emergency care: an interpretative qualitative study[J]. Stud Health Technol Inform, 2020(270):1001-1005. DOI:10.3233/SHTI200312. [24] Salwei ME, Carayon P, Hoonakker PLT, et al.Workflow integration analysis of a human factors-based clinical decision support in the emergency department[J]. Appl Ergon, 2021(97): 103498. DOI:10.1016/j.apergo.2021.103498. [25] Vandenberg AE, Vaughan CP, Stevens M, et al.Improving geriatric prescribing in the ED: a qualitative study of facilitators and barriers to clinical decision support tool use[J]. Int J Qual Health Care, 2017, 29(1):117-123.DOI:10.1093/intqhc/mzw129. [26] Huang Z, George MM, Tan YR, et al.Are physicians ready for precision antibiotic prescribing? A qualitative analysis of the acceptance of artificial intelligence-enabled clinical decision support systems in India and Singapore[J]. J Glob Antimicrob Resist,2023(35):76-85.DOI:10.1016/j.jgar.2023.08.016. [27] 翟越, 张玉侠, 虞正红. 护士视角下的护理临床决策支持系统实施障碍因素分析[J]. 中国护理管理, 2023, 23(1): 46-51. DOI:10.3969/j.issn.1672-1756.2023.01.010. [28] Gunlicks-Stoessel M, Liu Y, Parkhill C, et al.Adolescent, parent, and provider attitudes toward a machine learning based clinical decision support system for selecting treatment for youth depression[J]. BMC Med Inform Decis Mak, 2024, 24(1): 4. DOI:10.1186/s12911-023-02410-1. [29] Newton N, Bamgboje-Ayodele A, Forsyth R, et al.How are clinicians’ acceptance and use of clinical decision support systems evaluated over time? A systematic review[J]. Stud Health Technol Inform, 2024(310): 259-263. DOI:10.3233/SHTI230967. [30] Arpaci I, Ghazisaeedi M, Esmaeilzadeh F, et al.Ranking the critical success factors for hospital information systems using a fuzzy analytical hierarchy process[J]. Comput Inform Nurs,2023,41(10):765-770.DOI:10.1097/CIN.0000000000001042. [31] 医疗机构临床决策支持系统应用管理规范(试行)[J].医疗机构临床决策支持系统应用管理规范(试行)[J]. 中国卫生资源, 2023, 26(5): 620. [32] Nair M, Andersson J, Nygren JM, et al.Barriers and enablers for implementation of an artificial intelligence-based decision support tool to reduce the risk of readmission of patients with heart failure: stakeholder interviews[J]. JMIR Form Res, 2023(7): e47335. DOI:10.2196/47335. [33] Fernando M, Abell B, Tyack Z, et al.Using theories, models, and frameworks to inform implementation cycles of computerized clinical decision support systems in tertiary health care settings: scoping review[J]. J Med Internet Res, 2023(25): e45163. DOI:10.2196/45163. [34] 周勤学, 蔡建利, 韩慧, 等. 压力性损伤护理评估智能决策系统的研发与应用[J]. 护理学报, 2022, 29(2): 11-16. DOI:10.16460/j.issn1008-9969.2022.02.011. [35] Saban M, Sosna J, Singer C, et al.Clinical decision support system recommendations: how often do radiologists and clinicians accept them?[J]. Eur Radiol, 2022, 32(6): 4218-4224. DOI:10.1007/s00330-021-08479-4. [36] 卢雯, 陈湘玉. 护理临床决策支持系统使用意愿的影响因素研究[J]. 护理学报, 2023, 30(5):18-22. DOI:10.16460/j.issn1008-9969.2023.05.018 |
[1] | 吴超瑜, 刘尚昆. 麻醉恢复室护士危机管理能力的质性研究[J]. 护理学报, 2025, 32(3): 17-21. |
[2] | 谭雯渲, 张容, 张立力, 王玮, 邵艳红, 方庆虹, 朱瑾. 心脏移植患者手术决策困境的现象学研究[J]. 护理学报, 2025, 32(3): 69-73. |
[3] | 曹敏, 张培莉, 侯晓雅, 高超越, 郭林芳, 李滢. ABC-X模型下结直肠癌化疗患者照顾者营养照护体验的质性研究[J]. 护理学报, 2025, 32(2): 13-18. |
[4] | 孙娟, 李亚莉, 马安娜, 王华, 张会敏. 护理研究生对社区护理实践思政教学体验的质性研究[J]. 护理学报, 2025, 32(1): 19-23. |
[5] | 王语, 赵慧杰, 肖梦伟, 范硕宁, 孙佳丽, 王珂心, 苏炫, 杨滢瑞. 糖尿病视网膜病变患者硅油填充期间疾病体验与应对的质性研究[J]. 护理学报, 2025, 32(1): 68-72. |
[6] | 冯春玲, 胡夏晴, 徐琳, 蔡鑫健, 徐琴鸿. 基于社会生态系统理论的电话指导公众实施心肺复苏行为动机及需求的质性研究[J]. 护理学报, 2024, 31(9): 66-71. |
[7] | 曹依丽, 王玲, 王灿, 陈燕华, 秦虹云. 精神分裂症住院患者家属资源取向的质性研究[J]. 护理学报, 2024, 31(8): 74-78. |
[8] | 马瑞瑞, 范晓莉, 徐姝娟, 张伟, 陈婷, 谈飞飞. 护士参与终末期患者临终决策体验的质性研究[J]. 护理学报, 2024, 31(7): 6-11. |
[9] | 龙瑶, 卢春凤, 冯志仙. 临床护士对横向领导者特质感知的质性研究[J]. 护理学报, 2024, 31(7): 27-31. |
[10] | 张颖, 车晓艳, 万婠, 秦雪, 张恩思, 崇武, 郑淑娟. 我国性治疗护士工作范畴和核心能力的质性研究[J]. 护理学报, 2024, 31(7): 68-72. |
[11] | 张露心, 焦延超, 文稀, 田利, 王婷, 田凤美, 李惠玲. 护理本科生在“慕课西行”同步课堂学习体验的质性研究[J]. 护理学报, 2024, 31(6): 30-34. |
[12] | 胡晓涵, 占婷婷, 何望生, 乔疏桐, 李雪. 肝豆状核变性患者自我管理体验的质性研究[J]. 护理学报, 2024, 31(5): 17-21. |
[13] | 邓悦, 胡宇帆, 王冉, 张远星, 王芳, 袁萍, 陈璐. 老年患者接受远程医疗护理体验与需求质性研究的Meta整合[J]. 护理学报, 2024, 31(5): 50-55. |
[14] | 李珂, 杨振楠, 韩舒羽, 张建霞, 张梦杰, 李君. 护士经历护理中断事件真实体验的Meta整合[J]. 护理学报, 2024, 31(5): 61-66. |
[15] | 商丽, 黄菲, 程利, 张桃桃, 王宏梅. 本科护生参与漫改剧学习体验的质性研究[J]. 护理学报, 2024, 31(3): 25-29. |
|