以质量求发展,以服务铸品牌

护理学报 ›› 2020, Vol. 27 ›› Issue (19): 11-16.doi: 10.16460/j.issn1008-9969.2020.19.011

• 研究生园地 • 上一篇    下一篇

急性冠脉综合征患者PCI术后1年发生不良心血管事件风险预测模型的构建及评价

孙阳阳1, 隋萍2a, 刘晓红2b, 董玉娇2a, 王娅楠2b   

  1. 1.潍坊医学院护理学院,山东 潍坊 261000;
    2.潍坊医学院附属医院 a.护理部;b.心内科,山东 潍坊 261031
  • 收稿日期:2020-03-31 出版日期:2020-10-10 发布日期:2020-11-11
  • 通讯作者: 隋萍(1964-),女,山东潍坊人,本科学历,主任护师。E-mail:Suiping1964@163.com
  • 作者简介:孙阳阳(1996-),女,山东淄博人,本科学历,硕士研究生在读,护士。

Establishment, Evaluation of Risk Prediction Model of Major Adverse Cardiac Events in Patients with Acute Coronary Syndrome One Year after Percutaneous Coronary Intervention

SUN Yang-yang1, SUI Ping 2a, LIU Xiao-hong2b, DONG Yu-jiao2a, WANG Ya-nan2b   

  1. 1. School of Nursing, Weifang Medical College, Weifang 261000, China;
    2a. Dept. of Nursing Administration;
    2b. Dept. of Cardiology, Affiliated Hospital of Weifang Medical College, Weifang 261031, China
  • Received:2020-03-31 Online:2020-10-10 Published:2020-11-11

摘要: 目的 探讨急性冠脉综合征患者PCI术后1年发生不良心血管事件的独立危险因素,并构建风险预测模型。方法 回顾性收集潍坊市某三级甲等医院心内科诊断为急性冠脉综合征PCI术后1年随访的271例患者,按照随访时间的先后顺序将模型组和验证组按照7∶3的比例分组,模型组190例,验证组81例,模型组依据随访结局分为发生不良心血管事件组(61例)与未发生不良心血管事件组(129例),比较2组危险因素并建立风险预测模型,应用ROC曲线下面积检验模型预测效果,并选取81例验证组患者对模型的预测效果进行验证。结果 经单因素及多因素分析发现左主干病变、高血压、吸烟史、支架植入个数、低密度脂蛋白、中性粒细胞和血红蛋白是发生不良心血管事件的独立危险因素。预测模型为P=ex/(1+ex),X=-7.476+2.352×左主干病变的赋值+2.061×高血压的赋值+1.479×吸烟史的赋值+1.036×支架植入个数的赋值+3.526×低密度脂蛋白的赋值+1.096×中性粒细胞的赋值-0.487×血红蛋白的赋值。本模型的ROC曲线下面积为0.718[95%CI(0.629~0.807),P<0.001],灵敏度为62.3%,特异度为79.7%,约登指数为0.420。模型验证结果:ROC曲线下面积为0.756[95%CI(0.682~0.830),P<0.001],灵敏度为89.5%,特异度为85.0%,准确率为81.4%。结论 本研究构建的预测模型效果良好,可判别急性冠脉综合征患者PCI术后1年的发生不良心血管事件的危险因素,为临床医护人员进行风险管理提供参考依据。

关键词: 急性冠脉综合征, PCI术后, 不良心血管事件, 危险因素, 风险预测模型

Abstract: Objective To investigate the independent risk factors of major adverse cardiac events (MACEs) in patients with acute coronary syndrome (ACS) 1 year after percutaneous coronary intervention (PCI), and to establish a risk prediction model.Methods A retrospective study was conducted. A total of 271 ACS patients diagnosed in one tertiary gradeA hospital in Weifang receiving 1-year postoperative follow-up were divided into model group(n=190) and validation group (n=81) and the model group was sub-divided into MACE group (n=61) and non-MACE group(n=129). The risk factors in MACE group and non-MACE group were compared and the risk prediction model was established. The prediction effect was assessed using the area under the ROC curve, and 81 patients in validation group were selected to validate the prediction effect of the model.Results Univariate and multivariate analysis showed that left main artery disease, hypertension, smoking history, number of stents implanted, low density lipoprotein, neutrophils and hemoglobin were independent risk factors for MACEs. The predictive model was P=ex/(1+ex), X=-7.476+2.352×left main disease+2.061×hypertension +1.479× smoking history +1.036×number of stent implantation +3.526×low-density lipoprotein +1.096×neutrophil-0.487×hemoglobin. The area under ROC curve of this model was 0.718 [95%CI (0.629~0.807), P< 0.001]; the sensitivity 62.3%; the specificity 79.7%; and the Jorden index 0.420. The area under ROC curve was 0.756 [95%CI (0.682~0.830), P<0.001] and the sensitivity, specificity and accuracy were 89.5%, 85.0% and 81.4% respectively.Conclusion The prediction model constructed in this study has a good effect, which can identify the risk factors of MACEs in patients with ACS 1 year after PCI, and provide reference for clinical medical staff to carry out risk management.

Key words: acute coronary syndrome, PCI postoperative, MACE, risk factor, risk prediction model

中图分类号: 

  • R473.54
[1] 中国医师协会急诊医师分会,中华医学会心血管病学分会,中华医学会检验医学分会.急性冠脉综合征急诊快速诊疗指南[J].中华急诊医学杂志,2016,36(4):397-404.DOI:10.3969/j.issn.1002-1949.2016.03.002.
[2] 史利锋,林平,陈巍,等.经皮冠状动脉介入治疗术后心脏不良事件与冠心病危险因素关系的研究进展[J].解放军护理杂志, 2015, 32(7):27-29.DOI:10.3969/j.issn.1008-9993.2015.07.008.
[3] 谢向荣,汪和贵,汪茗,等.皖南地区中青年与老年冠心病患者危险因素的研究[J].皖南医学院学报,2018,37(1):15-18.DOI:10.3969/j.issn.1002-0217.2018.01.005.
[4] 武俊呈,杨娜,姚志鹏,等.经皮冠脉介入治疗术后死亡率与冠心病危险因素的研究进展[J].中国老年学杂志,2018,38(6):1529-1532.DOI:10.3969/j.issn.1005-9202.2018.06.101.
[5] 段秋艳,徐东妮,陈策.老年ACS患者PCI术后不良心血管事件影响因素分析[J].中国医学前沿杂志(电子版),2018,10(2):88-91.DOI:10.12037/YXQY.2018.02-20.
[6] 刘红涛,曹雪滨,王俊岭,等.急性冠脉综合征患者经皮冠状动脉介入治疗后心力衰竭高危因素分析[J].中华老年多器官疾病杂志,2013,(9):671-674.DOI:10.3724/SP.J.1264.2013.00166.
[7] 张灵芳.待产期孕妇的风险评估及预测模型的构建[D].郑州:郑州大学,2019.
[8] 陈江琼.PICC相关性上肢静脉血栓风险评估模型的构建与初步评价[D].天津:天津医科大学,2017.
[9] 陈晓霜.老年冠心病患者临床特点及PCI后发生MACCE的危险因素分析[D].昆明:昆明医科大学,2017.
[10] 王翎羽,林平.急性冠状动脉综合征危险分层工具的研究进展[J].护理学杂志,2016,31(7):109-112.DOI:10.3870/j.issn.1001-4152.2016.07.109.
[11] Vassalli Giuseppe, d’Angeli Ilaria, Scherff Frank, et al.Comparison of Clinical and Angiographic Prognostic Risk Scores in Elderly Patients Presenting with Acute Coronary Syndrome and Referred for Percutaneous Coronary Intervention[J].Swiss Medical Weekly,2015(145):w14049.DOI:10.4414/smw.2015.14049.
[12] 孙晓文,张文莹,李军涛.乳腺癌术后化疗患者营养不良风险预测评分系统的构建及评价[J].护理学杂志,2018,33(23):1-4.DOI:10.3870/j.issn.1001-4152.2018.23.001.
[13] Chen Y,Du H,Wei BH, et al.Development and Validation Of Risk-stratification Delirium Prediction Model for Critically Ill Patients:a Prospective,Observational,Sing-le-center Study[J].Medicine,2017,96(29):e7543.DOI:10.1097/MD.0000000000007543.
[14] 朱吉基,杨澜,许嘉鸿.老年冠心病患者经皮冠状动脉成型术后生存质量及其相关因素[J].中国老年学杂志, 2014(23):6573-6575.DOI:10.3969/j.issn.1005-9202.2014.23.013.
[15] 刘江萍,木胡牙提.急性冠脉综合征流行病学及危险因素的研究进展[J].国际心血管病杂志, 2019,46(1):1-3.DOI:10.3969/j.issn.1673-6583.2019.01.001.
[16] Shi XJ, Li MN, Xuan L, et al.Clinical Characteristics of Patients with Premature Acute Coronary Syndrome and Adverse Cardiovascular Events after PCI[J].Exp Ther Med, 2019,18(1):793-801.DOI:10.3892/etm.2019.7618.
[17] 马荻,赵振娟,张金丽.经皮冠状动脉介入治疗患者术后2年心脏不良事件发生概率预测模型的建立[J].护理学报,2013,20(10B):33-35.DOI:10.3969/j.issn.1008-9969.2013.20.011.
[18] Eagle KA, Guyton RA, Daviodoff R,et al.ACC/AHA 2004 Guideline Update for Coronary Artery Bypass Graft Surgery:Summary Article.A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery)[J].Amcoil Cardiol,2004, 44(5):213-310.DOI:10.1161/01.CIR.0000138790.14877.7D.
[19] Byrne C, Toarta C, Backus B, et al.The Heart Score in Predicting Major Adverse Cardiac Events in Patients Presenting to the Emergency Department with Possible Acute Coronary Syndrome: Protocol for a Systematic Review and Meta-analysis[J].Syst Rev, 2018,7(1):312-336.DOI:10.1186/s13643-018-0816-4.
[20] 刘惊今.血红蛋白水平对急性ST段抬高型心肌梗死病人预后的影响[J].心血管康复医学杂志,2016, 25(5):464-467.DOI:10.3969/j.issn.1008-0074.2016.05.03.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[3] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[4] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[5] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[6] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[7] 尹双, 朱思悦, 白永怿, 苏清清, 丁瑜, 涂国红, 郭亮梅, 高远. 急性冠脉综合征PCI术后患者运动康复随访的研究进展[J]. 护理学报, 2024, 31(23): 49-53.
[8] 胡宁宁, 李玉凤, 王仁媛, 李婉君, 林素兰. 学龄前儿童超重肥胖现状及影响因素分析[J]. 护理学报, 2024, 31(2): 16-21.
[9] 邬馨益, 徐林燕, 陈卓琦, 朱徐乐, 赵磊. 老年人运动认知功能减退综合征风险预测模型的构建与验证[J]. 护理学报, 2024, 31(10): 73-78.
[10] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[11] 孙菲, 刘敏, 胡珊珊, 吴蕾, 刘君, 李萍. 基于Meta分析构建早产儿母亲泌乳建立风险预测评分模型[J]. 护理学报, 2023, 30(23): 1-5.
[12] 张海燕, 于卫华, 张利, 任影, 郑俊俊. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J]. 护理学报, 2023, 30(22): 13-19.
[13] 张侍玉, 王玉然, 赵姝姝, 王杰敏. 头颈癌放疗患者重度放射性口腔黏膜炎风险预测模型的构建与验证[J]. 护理学报, 2023, 30(10): 68-72.
[14] 罗玉勤, 李孟璇, 程秋, 王婷, 郑晶予, 方进博, 龚玉萍. 血液肿瘤患者化疗后肛周感染危险因素病例对照研究[J]. 护理学报, 2022, 29(7): 7-11.
[15] 杨洁, 谢小华, 连万成, 杨梅, 邓丽萍, 潘璐. 急性缺血性脑卒中静脉溶栓后出血预测模型的构建与验证[J]. 护理学报, 2022, 29(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!