以质量求发展,以服务铸品牌

护理学报 ›› 2022, Vol. 29 ›› Issue (5): 10-14.doi: 10.16460/j.issn1008-9969.2022.05.010

• 研究生园地 • 上一篇    下一篇

急性缺血性脑卒中静脉溶栓后出血预测模型的构建与验证

杨洁1,2, 谢小华1,2, 连万成1, 杨梅2, 邓丽萍2, 潘璐2   

  1. 1.安徽医科大学 深圳二院临床学院,广东 深圳 518035;
    2.深圳市第二人民医院 深圳大学第一附属医院,广东 深圳 518035
  • 收稿日期:2021-11-20 出版日期:2022-03-10 发布日期:2022-04-11
  • 通讯作者: 谢小华(1964-),女,广西合浦人,硕士,主任护师,护理部主任,硕士研究生导师。E-mail:13560779836@163.com
  • 作者简介:杨洁(1995-),女,安徽宣城人,本科学历,硕士研究生在读。
  • 基金资助:
    广东省科技厅资助项目(2017A020215121); 广东省深圳市科技创新委员会科技计划资助项目(JCYJ20190806162803481); 广东省深圳市科技创新委员会科技计划资助项目(JCYJ20180228163026995); 广东省深圳市第二人民医院临床研究项目(20203357004)

Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke

YANG Jie1,2, XIE Xiao-hua1,2, LIAN Wan-cheng1, YANG Mei2, DENG Li-ping2, PAN Lu2   

  1. 1. Clinical College of Shenzhen Second Hospital, Anhui Medical University, Shenzhen 518035, China;
    2. The Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035,China
  • Received:2021-11-20 Online:2022-03-10 Published:2022-04-11

摘要: 目的 探讨急性缺血性脑卒中患者接受静脉溶栓治疗后发生出血的危险因素,构建预测模型。方法 纳入2014年1月—2020年12月于深圳市某三级甲等医院进行静脉溶栓治疗的急性缺血性脑卒中患者462例,将其分为出血组(n=264)和未出血组(n=198)。使用二分类Logistic回归模型分析相关危险因素,构建预测模型并进行验证。结果 年龄、溶栓前美国国立卫生研究院卒中量表评分、发病至溶栓时间、高血压史、脑白质疏松是急性缺血性脑卒中患者静脉溶栓后出血的独立危险因素。预测模型AUC为0.786,特异度为81.82%,敏感度为62.36%。决策曲线分析结果显示在出血风险0.306~0.990区间实施决策干预可获得临床净效益,并经验证后显示该模型具有较好的区分度(AUC=0.743,95%CI:0.699~0.788)和校准度(Hosmer-Lemeshow检验:χ2=11.559,P=0.172)。结论 本研究构建的列线图模型具有较佳的预测效能和临床应用价值,可重复性较强。

关键词: 急性缺血性脑卒中, 静脉溶栓, 出血, 危险因素, 预测模型, 列线图

Abstract: Objective To explore the risk factors of bleeding in patients with acute ischemic stroke after receiving intravenous thrombolysis, and construct a predictive model. Methods Totally 462 patients with acute ischemic stroke who underwent intravenous thrombolysis in a tertiary grade-A hospital in Shenzhen from January 2014 to December 2020 were divided into bleeding group (n=264) and non-bleeding group (n=198). The binary logistic regression model was used to analyze the risk factors, and the predictive model was constructed and verified. Results Age, the score of National Institutes of Health Stroke Scale (NIHSS) before thrombolysis, time from onset to thrombolysis, history of hypertension, and leukoaraiosis were independent risk factors for hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke. AUC of the predictive model was 0.786 and the specificity and sensitivity were 81.82% and 62.36% respectively. Decision curve analysis showed that implementing decision interventions in the bleeding risk range of 0.306 to 0.990 had net clinical benefit. And after verification, it had been shown that the model had good discrimination (AUC=0.743,95%CI:0.699~0.788) and Calibration degree (Hosmer-Lemeshow test:χ2=11.559,P=0.172). Conclusion The nomogram model constructed in this study has better predictive performance, clinical application value, and high repeatability.

Key words: acute ischemic stroke, intravenous thrombolysis, hemorrhage, risk factor, prediction model, nomogram

中图分类号: 

  • R473.5
[1] 周田田,黄萍,邹圣强. 急性缺血性脑卒中患者静脉溶栓后出血转化预测模型的研究进展[J].护理学报, 2021, 28(6): 17-21. DOI:10.16460/j.issn1008-9969.2021.06.017.
[2] Dzialowski I, Pexman JH, Barber PA, et al.Asymptomatic Hemorrhage after Thrombolysis May not be Benign: Prognosis by Hemorrhage Type in the Canadian Alteplase for Stroke Effectiveness Study Registry[J]. Stroke, 2007, 38(1): 75-79. DOI: 10.1161/01.STR.0000251644.76546.62.
[3] Lei C,Wu B,Liu M,et al.Asymptomatic Hemorrhagic Transformation after Acute Ischemic Stroke: Is It Clinically Innocuous?[J]. J Stroke Cerebrovasc Dis, 2014, 23(10):2767-2772. DOI:10.1016/j.jstrokecerebrovasdis.2014.06.024.
[4] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组.中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9):666-682. DOI:10.3760/cma. j. issn. 1006-7876.2018.09.004.
[5] Hacke W, Kaste M, Fieschi C, et al.Randomised Double-Blind Placebo-controlled Trial of Thrombolytic Therapy with Intravenous Alteplase in Acute Ischaemic Stroke (Ecass Ii). Second European-australasian Acute Stroke Study Investigators[J]. Lancet, 1998,352(9136):1245-1251.DOI:10.1016/s0140-6736(98)08020-9.
[6] Wen L, Zhang S, Wan K, et al.Risk Factors of Haemorrhagic Transformation for Acute Ischaemic Stroke in Chinese Patients Receiving Intravenous Thrombolysis: A Meta-analysis[J]. Medicine (Baltimore), 2020, 99(7):e18995. DOI: 10.1097/MD.0000000000018995.
[7] 常红,赵洁,王晓娟,等. 急性缺血性脑卒中患者静脉溶栓后出血预警模型的构建[J]. 中华护理杂志, 2019, 54(11): 1648-1652. DOI: 10.3761/j.issn.0254-1769.2019.11.010.
[8] Lyden P.Using the National Institutes of Health Stroke Scale: A Cautionary Tale[J]. Stroke, 2017, 48(2):513-519. DOI: 10.1161/STROKEAHA.116.015434.
[9] Wu Z, Zeng M, Li C, et al.Time-dependence of NIHSS in Predicting Functional Outcome of Patients with Acute Ischemic Stroke Treated with Intravenous Thrombolysis[J]. Postgrad Med J, 2019, 95(1122):181-186.DOI:10.1136/postgradmedj-2019-136398.
[10] Powers WJ, Rabinstein AA, Ackerson T, et al.2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2018,49(3):e46-e110.DOI:10.1161/STR.0000000000000158.
[11] Sandercock P, Wardlaw JM, Lindley R I, et al.The Benefits and Harms of Intravenous Thrombolysis with Recombinant Tissue Plasminogen Activator within 6 h of Acute Ischaemic Stroke (The Third International Stroke Trial [Ist-3]): A Randomised Controlled Trial[J]. Lancet, 2012, 379(9834):2352-2363. DOI:10.1016/S0140-6736(12)60768-5.
[12] Niesen WD, Schläger A, Reinhard M, et al.Transcranial Sonography to Differentiate Primary Intracerebral Hemorrhage from Cerebral Infarction with Hemorrhagic Transformation[J]. J Neuroimaging, 2018, 28(4):370-373. DOI:10.1111/jon.12510.
[13] 李莹. 不同严重程度及时间窗的急性缺血性脑卒中患者静脉溶栓的预后研究[D]. 天津:天津医科大学, 2019.
[14] Lei Z, Li S, Hu S, et al.Effects of Baseline Systolic Blood Pressure on Outcome in Ischemic Stroke Patients with Intravenous Thrombolysis Therapy: A Systematic Review and Meta-analysis[J]. Neurologist, 2020,25(3):62-69. DOI:10.1097/NRL.0000000000000267.
[15] 王亚玲,王冰寒,张艳,等. 急性缺血性脑卒中患者溶栓术后预防出血转化的最佳证据总结[J]. 护理学报, 2021, 28(3):46-52. DOI:10.16460/j.issn1008-9969.2021.03.046.
[16] 潘静,陈晓霞,程洁,等. 血压及其变异性与脑白质疏松症的相关性研究进展[J]. 中国临床神经科学, 2017, 25(2): 241-245. DOI:10.3969/j.issn.1008-0678.2017.02.018.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[3] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[4] 曹娟, 李方, 于跃, 戴丽, 杨丹丹, 李志华, 徐欣怡, 戴琪, 陈柯宇. 食管癌术后静脉血栓栓塞症风险预测模型的构建及验证[J]. 护理学报, 2024, 31(8): 63-68.
[5] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[6] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[7] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[8] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[9] 王月, 刘国庆, 牛聪影, 张振伟, 孙建, 褚友艾, 秦寒枝. 髋部骨折患者术后30天死亡风险预测模型的范围综述[J]. 护理学报, 2024, 31(24): 51-56.
[10] 杨丽娜, 黄蓉, 姚梅琦, 王竹青, 徐怡婷, 谢佩敏. 产后母乳喂养行为中断风险预测模型的系统评价[J]. 护理学报, 2024, 31(23): 59-65.
[11] 章明阳, 刘京辉, 金雁, 徐文琪, 李斌飞, 黄珊, 杜李百合, 侯亚甜, 李小寒. 围手术期低体温风险预测模型的系统评价[J]. 护理学报, 2024, 31(22): 54-60.
[12] 胡宁宁, 李玉凤, 王仁媛, 李婉君, 林素兰. 学龄前儿童超重肥胖现状及影响因素分析[J]. 护理学报, 2024, 31(2): 16-21.
[13] 卢歌玲, 罗伟香, 欧静, 郑春娆. 甲状腺术后颈部出血预防及管理的最佳证据总结[J]. 护理学报, 2024, 31(2): 59-64.
[14] 姜宁宁. 连续性肾脏替代治疗患者低体温发生风险列线图预测模型构建与验证[J]. 护理学报, 2024, 31(19): 65-72.
[15] 杨蓓, 叶红芳, 相卢伟, 路诗雨. 中老年2型糖尿病患者轻度认知障碍风险预测模型的构建与验证[J]. 护理学报, 2024, 31(13): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!