以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (1): 52-57.doi: 10.16460/j.issn1008-9969.2024.01.052

• 循证护理 • 上一篇    下一篇

2型糖尿病患者合并骨质疏松风险预测模型的范围综述

史婷婷1, 李婷2a, 黄友鹏3a, 赵媛3b, 朱晓丽2b, 周梦娟3a, 陈云梅1   

  1. 1.红河卫生职业学院 护理学院,云南 蒙自 661100;
    2.大理大学第一附属医院 a.急诊科; b.内分泌科,云南 大理 671000;
    3.大理大学 a.护理学院; b.公共卫生学院,云南 大理 671000
  • 收稿日期:2023-09-02 出版日期:2024-01-10 发布日期:2024-02-19
  • 通讯作者: 陈云梅(1969-),女,云南武定人,本科学历,教授,院长。E-mail:964663529@qq.com
  • 作者简介:史婷婷(1991-),女,云南蒙自人,硕士,讲师。
  • 基金资助:
    云南省教育厅科学研究基金(2022Y878); 云南省科技厅科技计划项目(202101BA070001-118); 云南省大理市2021年科技计划项目(2021KBG057)

Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review

SHI Ting-ting1, LI Ting2a, HUANG You-peng3a, ZHAO Yuan3b, ZHU Xiao-li2b, ZHOU Meng-juan3a, CHEN Yun-mei1   

  1. 1. School of Nursing, Honghe Health Vocational College, Mengzi 661100, China;
    2a. Dept. of Emergency; 2b. Dept. of Endocrinology, the First Affiliated Hospital of Dali University, Dali 671000, China;
    3a. School of Nursing; 3b. School of Public Health, Dali University, Dali 671000, China
  • Received:2023-09-02 Online:2024-01-10 Published:2024-02-19

摘要: 目的 对2型糖尿病患者并发骨质疏松的风险预测模型进行范围综述,为疾病科学防治及未来临床护理工作提供借鉴。方法 系统检索中英文数据库,对纳入文献进行文献偏倚风险评估,提取2型糖尿病患者骨质疏松发生率、模型构建情况、模型预测因子及性能等信息,并进行风险预测模型预测因子分类。结果 共纳入16项研究,涉及16个模型,2型糖尿病患者骨质疏松的患病率为14.4%~54.08%。模型效能总体较好,但模型构建的方法单一。年龄、糖尿病病程和体质指数是2型糖尿病患者并发骨质疏松风险预测模型的重要因子。结论 临床护理人员应重视2型糖尿病患者并发骨质疏松的高危因素,精准选择性能良好的评估工具指导护理实践。可借助可视化手段构建预测性能好、实用性强的模型,并通过前瞻性、多中心、外部验证不断优化模型,以期达到最佳的预测效果,便于及时干预。

关键词: 2型糖尿病, 骨质疏松, 预测模型, 风险预测, 范围综述

Abstract: Objective To conduct a scoping review on risk prediction model of osteoporosis in patients with type 2 diabetes, and to provide reference for its prevention and clinical nursing. Methods The Chinese and English databases were systematically searched, and the risk of literature bias was evaluated. The incidence of osteoporosis in patients with type 2 diabetes, model construction, model predictors and performance were extracted, and the predictors of risk prediction model were classified. Results Sixteen studies were included, involving 16 models. The prevalence of osteoporosis in patients with type 2 diabetes ranged from 14.4% to 54.08%. The overall effectiveness of the model was good, but the method of model construction was single. Age, duration of diabetes and body mass index were important factors in the risk prediction model of osteoporosis in patients with type 2 diabetes. Conclusion Nursing staff should pay attention to the high risk factors of osteoporosis in patients with type 2 diabetes, and evaluation tools with good performance should be considered to guide nursing practice. A model with good performance and strong practicability can be constructed by means of visualization, and be continuously optimized through forward-looking, multi-center and external verification in order to achieve the best prediction effect and provide timely intervention for the patients.

Key words: type 2 diabetes, osteoporosis, prediction model, risk prediction, scoping review

中图分类号: 

  • R473.58
[1] Prost S, Pesenti S, Fuentes S, et al.Treatment of osteoporotic vertebral fractures[J]. Orthop Traumatol-sur,2021,107(1S):102779.DOI:10.1016/j.otsr.2020.102779.
[2] Zheng Y, Ley SH, Hu FB.Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endoc,2018,14(2):88-98.DOI:10.1038/nrendo.2017.151.
[3] Wang L, Zhang D, Xu J.Association between the Geriatric Nutritional Risk Index,bone mineral density and osteoporosis in type 2 diabetes patients[J]. J Diabetes Investig,2020,11(4):956-963.DOI:10.1111/jdi.13196.
[4] Wu X, Zhai F, Chang A, et al.Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus[J].J Endocrinol Invest,2023,46(12):2535-2546.DOI:10.1007/s40618-023-02109-0.
[5] Moons KGM, De Groot JAH, Bouwmeester W, et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[6] Moons KGM, Wolff RF, Riley RD, et al.PROBAST:a tool toassess risk of bias and applicability of prediction model studies:explanation and elaboration[J]. Ann Intern Med,2019,170(1):W1-W33. DOI:10.7326/M18-1377.
[7] 符玲玲. 2型糖尿病合并骨质疏松的危险因素及风险列线图模型的建立[J].吉林医学,2022,43(3):623-626.DOI:10.3969/j.issn.1004-0412.2022.03.016.
[8] 曾锦辉,王晓云,宋渊浩,等.2型糖尿病合并骨质疏松危险因素Logistic回归分析[J].中国卫生标准管理,2023,14(4):101-105. DOI:10.3969/j.issn.1674-9316.2023.04.022.
[9] 王秋怡,陈显英,符茂雄.2型糖尿病女性患者绝经后骨质疏松预测模型的构建与验证[J].中国现代医学杂志,2022,32(10):53-59.DOI:10.3969/j.issn.1005-8982.2022.10.010.
[10] 周影,潘卫民,肖欢,等.海口地区常住居民老年2型糖尿病患者骨质疏松发生风险列线图预测模型的建立与评估[J].中国老年学杂志,2022, 42(21):5251-5255.DOI:10.3969/j.issn.1005-9202.2022.21.029.
[11] 谢碧燕,陈小燕.中老年2型糖尿病合并骨质疏松症风险预测模型的构建与验证[J].中外医学研究, 2022,20(23):173-177.DOI:10.14033/j.cnki.cfmr.2022.23.044.
[12] 梁赟,虞艳芳. 2型糖尿病患者绝经后骨质异常与OSTA指数间的相关性研究[J].检验医学与临床, 2014,11(20):2822-2827.DOI:10.3969/j.issn.1672-9455.2014.20.010.
[13] 王环君,李琳,高海花,等.老年营养风险指数与老年男性2型糖尿病患者骨密度和骨质疏松症的关系[J].中国骨质疏松杂志,2021,27(12):1739-1744.DOI:10.3969/j.issn.1006-7108.2021.12.004.
[14] 倪会芳,李隽,丁源,等.中性粒细胞/淋巴细胞比值和单核细胞/高密度脂蛋白胆固醇比值预测绝经后2型糖尿病患者发生骨质疏松症的价值研究[J]. 中国全科医学,2022,25(18):2207-2214.DOI:10.12114/j.issn.1007-9572.2022.02.021.
[15] Tang JL, Pan BB, Shu Y, et al.Evaluation of two tools for the early screening of osteoporosis in postmenopausal Chinese women with type 2 diabetes mellitus[J]. J Int Med Res,2020,48(3):300060520903889.DOI:10.1177/0300060520903889.
[16] Wu Y, Xing X, Ye S, et al.Lipid levels related to osteoporosis in Patients with type 2 diabetes[J]. Exp Clin Endocrinol Diabetes, 2019, 127(7):468-472.DOI:10.1055/a-0735-9361.
[17] Raška I Jr, Rašková M, Zikán V, et al.Prevalence and risk Factors of osteoporosis in postmenopausal women with type 2 diabetes Mellitus[J]. Cent Eur J Public Health,2017,25(1):3-10. DOI:10.21101/cejph.a4717.
[18] Li T, Hu L, Yin XL, et al.Prevalence and risk factors of osteoporosis in patients with type 2 diabetes mellitus in Nanchang (China):a retrospective cohort study[J].Diabetes Metab Syndr Obes,2022(15):3039-3048.DOI:10.2147/DMSO.S372348.
[19] Sta Romana M, Li-Yu JT.Investigation of the relationship between type 2 diabetes and osteoporosis using Bayesian inference[J].J Clin Densitom,2007,10(4):386-390.DOI:10.1016/j.jocd.2007.08.001.
[20] Wang L, Zhang D, Xu J.Association between the Geriatric Nutritional Risk Index(GNRI), bone mineral density and osteoporosis in type 2 diabetes patients[J]. J Diabetes Investig,2020,11(4):956-963.DOI:10.1111/jdi.13196.
[21] Li JB, Zhang H, Yan L, et al.Homocysteine, an additional factor, is linked to osteoporosis in postmenopausal women with type 2 diabetes[J]. J Bone Miner Metab, 2014,32(6):718-24.DOI:10.1007/s00774-013-0548-4.
[22] Wen Y, Li H, Zhang X, et al.Correlation of osteoporosis in patients with newly diagnosed type 2 diabetes:a retrospective study in Chinese population[J].Front Endocrinol (Lausanne),2021(12):531904.DOI:10.3389/fendo.2021.531904.
[23] 张旋,罗丽娅,王瞭信,等.2型糖尿病合并骨质疏松患者外周血中VDR mRNA表达与25(OH) D、甘油三酯的关系研究[J].中国骨质疏松杂志,2019,25(6):742-746.DOI:10.3969/j.issn.1006-7108.2019.06.003.
[24] 李静,侯云霞,强万敏.癌症患者非计划性再入院风险预测模型的范围综述[J].中华护理杂志,2022, 57(9):1079-1087.DOI:10.3761/j.issn.0254-1769.2022.09.008.
[25] Zou Y, Zhao L, Zhang J, et al.Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease[J]. Ren Fail,2022,44(1):562-570.DOI:10.1080/0886022X.2022.2056053.
[26] Cooray SD, Boyle JA, Soldatos G, et al.Development, validation and clinical utility of a risk prediction model for adverse pregnancy outcomes in women with gestational diabetes: the PeRSonal GDM model[J]. E Clinical Medicine,2022(52):101637.DOI:10.1016/j.eclinm.2022.101637.
[27] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021,28(7):30-34.DOI:10.16460/j.issn1008-9969.2021.07.030.
[28] Li R, Yuan K, Yu X, et al.Construction and validation of risk prediction model for gestational diabetes based on a nomogram[J].Am J Transl Res,2023,15(2):1223-1230.
[29] Wang GX, Hu XY, Zhao HX, et al.Development and validation of a diabetic retinopathy risk prediction model for middle-aged patients with type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne),2023(14):1132036.DOI:10.3389/fendo.2023.1132036.
[30] Bu F, Deng XH, Zhan NN, et al.Development and validation of a risk prediction model for frailty in patients with diabetes[J].BMC Geriatr,2023,23(1):172.DOI:10.1186/s12877-023-03823-3.
[31] 张海燕,于卫华,张利,等. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J].护理学报,2023,30(22):13-19.DOI:10.16460/j.issn1008-9969.
[1] 李垚, 陈小敏, 夏敏, 吴茜, 张琳, 陈叡喆, 葛莉丽, 吴逸梅. 肿瘤患者衰弱评估工具应用的范围综述[J]. 护理学报, 2025, 32(4): 48-52.
[2] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[3] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[4] 陈恩琳, 莫丰菱, 庄泽明, 张明哲, 周佳坤, 黄丽芳, 纪龙飞, 张莉芳. 脑卒中单侧空间忽略评估工具的范围综述[J]. 护理学报, 2025, 32(3): 43-49.
[5] 杨蓓, 叶红芳, 张宁, 相卢伟, 路诗雨. 老年2型糖尿病患者体力活动现状及影响因素研究[J]. 护理学报, 2025, 32(2): 7-12.
[6] 朱天顺, 朱可可, 薛会元, 焦聪聪, 魏长慧, 王贺. 信息框架效应理论在健康管理领域应用的范围综述[J]. 护理学报, 2025, 32(2): 44-49.
[7] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[8] 毕雅昕, 端烨, 何丽君, 徐秒, 龚荣花. 减重代谢术后骨质疏松症预防与管理的最佳证据总结[J]. 护理学报, 2025, 32(1): 44-49.
[9] 李珂, 贺雨琼, 李雨蔚, 常颖. 脑卒中患者跌倒恐惧干预研究的范围综述[J]. 护理学报, 2025, 32(1): 50-55.
[10] 李丁丁, 王帅有, 朱杉杉, 郭鑫, 张会敏, 王宏茹, 潘勤. 脑卒中患者支持性照护需求评估工具的范围综述[J]. 护理学报, 2024, 31(9): 48-53.
[11] 叶香, 黎楷, 黄敏, 张倩, 李际敏, 刘荣珍, 孟敏, 朱少玉, 谢翠华. 对成年2型糖尿病患者基于移动APP+家属共管血糖的研究[J]. 护理学报, 2024, 31(9): 60-65.
[12] 曹娟, 李方, 于跃, 戴丽, 杨丹丹, 李志华, 徐欣怡, 戴琪, 陈柯宇. 食管癌术后静脉血栓栓塞症风险预测模型的构建及验证[J]. 护理学报, 2024, 31(8): 63-68.
[13] 郭俊晨, 刘超毅, 戴云云, 蒋思珊, 杨索, 谌永毅. 虚拟现实技术在生命末期患者中应用的范围综述[J]. 护理学报, 2024, 31(7): 40-45.
[14] 梅紫琦, 金胜姬, 李玮彤, 柏亚妹, 宋玉磊, 李伊婷, 王萌, 徐桂华. 智能机器人在护理健康教育领域中应用的范围综述[J]. 护理学报, 2024, 31(7): 57-62.
[15] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!