以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (1): 22-27.doi: 10.16460/j.issn1008-9969.2023.01.022

• 研究生园地 • 上一篇    下一篇

基于Logistic回归分析颅脑手术后炎症指标动态变化及对颅内感染的诊断价值

楚文强1, 彭俊祥2, 李丹玲1   

  1. 1.南方医科大学公共卫生学院 生物统计学系,广东 广州 510515;
    2.南方医科大学南方医院 神经外科,广东 广州 510515
  • 收稿日期:2022-07-26 出版日期:2023-01-10 发布日期:2023-02-22
  • 通讯作者: 李丹玲(1983-),女,湖南永州人,博士,副教授,硕士研究生导师。E-mail:danling@smu.edu.cn
  • 作者简介:楚文强(1998-),男,安徽阜阳人,本科学历,硕士研究生在读。

Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis

CHU Wen-qiang1, PENG Jun-xiang2, LI Dan-ling1   

  1. 1. Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China;
    2. Dept. of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2022-07-26 Online:2023-01-10 Published:2023-02-22

摘要: 目的 探究颅脑外科手术后患者体温、降钙素原、C反应蛋白、白细胞计数随时间的动态变化及其对颅内感染的诊断价值。方法 分析1 308例经手术治疗的颅内病变患者临床资料,根据是否发生感染分为感染组与非感染组,使用广义线性混合模型分析体温、C反应蛋白、白细胞计数及白细胞计数平均水平随时间的变化,使用Logistic回归对是否感染进行预测。结果 (1)术后第1、第2、第3、第5、第7、第9天2组颅脑手术患者体温比较,差异均有统计学意义。术后2 d内2组患者白细胞计数、C反应蛋白、降钙素原均无差异,第3、第5、第7、第9天3项指标比较,差异均有统计学意义;(2)使用患者第2天体温、白细胞计数、C反应蛋白及降钙素原进行联合检测的AUC为0.802(95%CI:0.760~0.845),若增加第2天与第3天的差值来联合检测颅内感染可将AUC提高至为0.915(95%CI:0.887~0.949)。结论 使用患者第2天各项指标及其与第3天指标的差值对感染进行预测可以大大提高预测准确性,提示临床应用中术后感染诊断时需要同时考虑生理指标及其变化趋势,可以有效提高神经外科术后患者的护理质量。

关键词: 颅内感染, 白细胞计数, 降钙素原, C反应蛋白, 预测模型

Abstract: Objective To investigate the dynamic changes over time of body temperature, procalcitonin, C-reactive protein and leukocyte count in patients after intracranial surgery and their diagnostic value for intracranial infections. Methods The clinical data of 1,308 patients with intracranial lesions treated by surgery were analyzed, and the patients were divided into infection group and non-infection group. The changes over time of body temperature, C-reactive protein, leukocyte count and mean level of leukocyte count were analyzed using generalized linear mixed model, and Logistic regression was used to predict the occurrence of infection. Results (1) The differences were statistically significant when comparing body temperature in the 2 groups on the 1st, 2nd, 3rd, 5th, 7th and 9th day after the surgery. There was no difference in leukocyte count, C-reactive protein and procalcitonin between the 2 groups within 2 days after surgery, and the differences were statistically significant when comparing these three indexes on the 3rd, 5th, 7th and 9th day after the surgery. (2) The AUC of the combined test of body temperature, leukocyte count, C-reactive protein and procalcitonin on the 2nd day was 0.802 (95% CI: 0.760 to 0.845), and the AUC could be increased to 0.915 (95% CI: 0.887 to 0.949) when the difference of the indicators between the 2nd and 3rd day were included. Conclusion The prediction accuracy can be greatly improved when the indicators and the difference of the indicators between day 2 and 3 are used for the prediction of intracranial infection, suggesting the necessity of considering both physiological indicators and their trends when diagnosing postoperative infection in clinical practice, which can also effectively improve the nursing quality of neurosurgical patients.

Key words: intracranial infection, leukocyte count, procalcitonin, C-reactive protein, prediction model

中图分类号: 

  • R473.6
[1] Yao J, Liu D.Logistic regression analysis of risk factors for intracranial infection after multiple traumatic craniotomy and preventive measures[J]. J Craniofac Surg, 2019,30(7):1946-1948.DOI:10.1097/SCS.0000000000004972.
[2] 王世华, 朱金君, 朱坤灿, 等. 开颅脑肿瘤术后颅内感染的特点与相关危险因素分析[J]. 中华肿瘤防治杂志, 2020,27(S1):8-9.
[3] Shi Z, Xu M, Wang Y, et al.Post-craniotomy intracranial infection in patients with brain tumors: a retrospective analysis of 5723 consecutive patients[J]. Brit J Neurosurg, 2017,31(1):5-9.DOI:10.1080/02688697.2016.1253827.
[4] Hu Y, He W, Yao D, et al.Intrathecal or intraventricular antimicrobial therapy for post-neurosurgical intracranial infection due to multidrug-resistant and extensively drug-resistant gram-negative bacteria: a systematic review and meta-analysis[J]. Int J Antimicrob Agents, 2019,54(5):556-561.DOI:10.1016/j.ijantimicag.2019.08.002.
[5] Lan G, Xiao-Liang Y, Hui-Kang Y, et al.Application value analysis of magnetic resonance imaging and computed tomography in the diagnosis of intracranial infection after craniocerebral surgery[J]. World J Clin Cases, 2020,8(23):5894-5901.DOI:10.12998/wjcc.v8.i23.5894.
[6] 简智恒. 神经外科术后炎症指标的变化趋势的临床研究[D]. 广州:南方医科大学, 2013.
[7] 胡云华, 李淑艳, 陈林芳, 等. 急诊开颅手术患者颅内感染的影响因素[J]. 中华医院感染学杂志, 2022,32(2):203-206.DOI:10.11816/cn.ni.2022-211788.
[8] 张立, 钱晓波, 叶经纬, 等. 重型颅脑损伤患者术后继发颅内感染的危险因素及血清PCT、CRP的预测价值[J]. 热带医学杂志,2020,20(12):1577-1580.DOI:10.3969/j.issn.1672-3619.2020.12.011.
[9] 周婧婧, 黄飞, 张旦旦, 等. 老年颅脑外伤术后颅内感染病原菌特点及多指标联合预警诊断模型建立[J]. 中国老年学杂志, 2022,42(6):1395-1398.DOI:10.3969/j.issn.1005-9202.2022.06.035.
[10] 张玉林, 杨龙, 金福强. C反应蛋白和降钙素原在脑出血术后合并感染中的作用研究[J]. 重庆医学, 2015,44(20):2849-2851.DOI:10.3969/j.issn.1671-8348.2015.20.041.
[11] Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression[J]. Am J Epidemiol,2007,165(6):710-718.DOI:10.1093/aje/kwk052.
[12] Riley RD, Ensor J, Snell K, et al.Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020,368:441.DOI:10.1136/bmj.m441.
[13] 中华医学会神经外科学分会, 中国神经外科重症管理协作组.中国神经外科重症患者感染诊治专家共识(2017)[J]. 中华医学杂志, 2017,97(21):1607-1614.DOI:10.3760/cma.j.issn.0376-2491.2017.21.005.
[14] Douglas B, Martin M, Ben B, et al.Fitting linear mixed-effects models using lme4[J]. J Stat Softw, 2015,67(1):1-48.DOI:10.18637/jss.v067.i01.
[15] Lenth RV,Buerkner P, Herve M, et al. Emmeans: estimated marginal means, aka least-squares means[EB/OL]. (2022-06-05)[2022-09-09]. https://cran.r-project.org/web/packages/emmeans/.
[16] LeDell E, Petersen M, van der Laan M. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates[J]. Electron J Stat, 2015, 9(1):1583-1607.DOI:10.1214/15-EJS1035.
[17] Jalali A, Alvarez-Iglesias A, Roshan D, et al.Visualising statistical models using dynamic nomograms[J]. PLoS One, 2019,14(11):e0225253.DOI:10.1371/journal.pone.0225253.
[18] 简智恒, 张喜安, 漆松涛, 等. 神经外科术后炎症指标的变化及意义[J]. 中华神经医学杂志, 2013,12(4):415-418.DOI: 10.3760/cma.j.issn.1671-8925.2013.04.021.
[19] 楚燕飞, 郑鲁, 姚智强, 等. 幕下开颅术后发热原因及处理[J]. 中国神经精神疾病杂志, 2011,37(5):260-265.DOI:10.3969/j.issn.1002-0152.2011.05.002.
[20] 卜娜分, 蔡海云, 黄涛, 等. 46例脑出血患者神经内镜下颅内血肿清除术的并发症观察及护理[J].护理学报, 2022,29(2):71-72.DOI:10.16460/j.issn1008-9969.2022.02.071.
[21] 张丹梅, 袁丽, 朱琪. 开颅手术后颅内感染风险预测模型构建及效果评价[J]. 中国感染控制杂志,2022,21(5):439-446.DOI:10.12138/j.issn.1671-9638.20222269.
[22] 邱锋, 蔡佩浩, 龚立, 等. 高血压脑出血微创穿刺术后颅内感染的临床特点及血清NLRP3、S-100b联合检测的预测价值[J]. 海南医学, 2022,33(5):550-553.DOI:10.3969/j.issn.1003-6350.2022.05.002.
[23] 孙占玉, 郭智霖, 王上桥. 血清PTX3和NLRP3联合检测在颅脑损伤术后颅内感染早期诊治中的应用研究[J]. 热带医学杂志,2022,22(6):837-841.DOI:10.3969/j.issn.1672-3619.2022.06.020.
[24] 顿士娟,邹琪,吴强,等.颅脑术后继发颅内感染患者脑脊液肝素结合蛋白水平的变化及意义[J].中华全科医学,2020,18(12):2017-2020. DOI:10.16766/j.cnki.issn.1674-4152.001677.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[3] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[4] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[5] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[6] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[7] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[8] 王月, 刘国庆, 牛聪影, 张振伟, 孙建, 褚友艾, 秦寒枝. 髋部骨折患者术后30天死亡风险预测模型的范围综述[J]. 护理学报, 2024, 31(24): 51-56.
[9] 杨丽娜, 黄蓉, 姚梅琦, 王竹青, 徐怡婷, 谢佩敏. 产后母乳喂养行为中断风险预测模型的系统评价[J]. 护理学报, 2024, 31(23): 59-65.
[10] 章明阳, 刘京辉, 金雁, 徐文琪, 李斌飞, 黄珊, 杜李百合, 侯亚甜, 李小寒. 围手术期低体温风险预测模型的系统评价[J]. 护理学报, 2024, 31(22): 54-60.
[11] 姜宁宁. 连续性肾脏替代治疗患者低体温发生风险列线图预测模型构建与验证[J]. 护理学报, 2024, 31(19): 65-72.
[12] 杨蓓, 叶红芳, 相卢伟, 路诗雨. 中老年2型糖尿病患者轻度认知障碍风险预测模型的构建与验证[J]. 护理学报, 2024, 31(13): 18-23.
[13] . 轻度认知障碍向阿尔兹海默病进展风险预测模型的系统评价[J]. 护理学报, 2024, 31(12): 47-53.
[14] 欧阳蝶, 许豆豆, 孙燕荣, 陈莹, 吕安康, 吴蓓雯. 基于生活方式相关指标的非肥胖人群非酒精性脂肪肝预测模型的构建[J]. 护理学报, 2024, 31(10): 1-7.
[15] 邬馨益, 徐林燕, 陈卓琦, 朱徐乐, 赵磊. 老年人运动认知功能减退综合征风险预测模型的构建与验证[J]. 护理学报, 2024, 31(10): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!