以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (16): 12-18.doi: 10.16460/j.issn1008-9969.2023.16.012

• 研究生园地 • 上一篇    下一篇

维持性血液透析患者营养不良风险列线图模型及在线计算器的构建与验证研究

刘雪琴1, 刘晓辉2, 平智广3   

  1. 1.新乡医学院三全学院 护理学院,河南 新乡 453513;
    2.河南省中医院,河南 郑 州 450002;
    3.郑州大学 公共卫生学院,河南 郑州 450001
  • 收稿日期:2023-02-23 出版日期:2023-08-25 发布日期:2023-09-08
  • 通讯作者: 刘晓辉(1971-),女,河南郑州人,博士,主任护师。E-mail:1173652033@qq.com
  • 作者简介:刘雪琴(1997-),女,河南周口人,硕士,护师。
  • 基金资助:
    河南省教育厅高等学校重点科研项目(16A320073)

Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients

LIU Xue-qin1, LIU Xiao-hui2, PING Zhi-guang3   

  1. 1. School of Nursing, Sanquan College of Xinxiang Medical University, Xinxiang 453513, China;
    2. Henan Hospital of Traditional Chinese Medicine, Zhengzhou 450003, China;
    3. School of Public Health, Zhengzhou University, Zhengzhou 450001, China
  • Received:2023-02-23 Online:2023-08-25 Published:2023-09-08

摘要: 目的 构建维持性血液透析患者营养不良可视化风险预测模型,个体化预测其发病风险。方法 选取河南省3所三级甲等医院2022年3—10月透析中心457例进行维持性血液透析治疗的患者,纳入前2所医院的患者为建模组(n=320),第3所医院的患者为验证组(n=137)。单因素、多因素Logistic 回归分析构建模型。采用受试者工作特征曲线及Hosmer-Lemeshow校准曲线检验模型的区分度及校准度。利用R软件进行维持性血液透析患者营养不良风险在线计算器开发。结果 单因素及多因素Logistic回归分析结果显示年龄(≥60岁)(OR=2.550,95%CI:1.390~4.724)、透析月龄(OR=1.029,95%CI:1.016~1.043)、透析充分性(Kt/v<1.2)(OR=4.041,95%CI:2.226~7.519)、血清白蛋白(OR=0.860,95%CI:0.796~0.922)、血红蛋白(OR=0.979,95%CI:0.963~0.996)、抑郁评分(OR=1.101,95%CI:1.057~1.148)是维持性血液透析患者发生营养不良的影响因素。模型内部评价及外部验证结果显示,曲线下面积分别为0.881、0.875,Hosmer-Lemeshow拟合优度检验P值分别为0.687、0.621,平均绝对误差分别为0.019、0.012。结论 本研究构建的维持性血液透析患者营养不良风险列线图模型及在线计算器效能较好,使用方法简便,为维持性血液透析患者发生营养不良风险的早期筛查提供参考。

关键词: 维持性血液透析, 营养不良, 预测模型, 列线图, 在线计算器

Abstract: Objective To construct a visual risk prediction model for malnutrition in maintenance hemodialysis (MHD) patients, and to predict the risk of malnutrition individually. Methods A total of 457 patients receiving MHD in dialysis center of three tertiary grade-A hospitals in Henan Province from March to October 2022 were selected. Patients from the first two hospitals were included as the modeling group (n=320), and those from the third hospital as the validation group (n=137). Univariate and multivariate logistic regression analysis was used to construct the model. ROC curve and Hosmer-Lemeshow calibration curve were used to test the differentiation and calibration degree of the prediction models. The software packages shiny, shinydashboard, survival and regplot in R software were used to develop an online calculation tool for risk prediction of malnutrition in MHD patients. Results Age (OR=2.550,95%CI:1.390~4.724),dialysis age (OR=1.029,95%CI:1.016~1.043),dialysis adequacy (OR=4.041,95%CI:2.226~7.519), serum albumin(OR=0.860,95%CI:0.796~0.922), hemoglobin(OR=0.979,95%CI:0.963~0.996), depression score(OR=1.101,95%CI:1.057~1.148) were finally included in this study. Internal evaluation and external verification of the model showed that the area under the curve was 0.881 and 0.875, the P-value of Hosmer-Lemeshow goodness of fit test was 0.687 and 0.621, and the average absolute error was 0.019 and 0.012, respectively. Conclusion The risk prediction model of malnutrition in MHD patients and the online calculator constructed in this study are effective and easy to use, providing reference for the early screening of malnutrition risk in MHD patients.

Key words: maintenance hemodialysis, malnutrition, prediction model, nomogram, online calculator

中图分类号: 

  • R47
[1] 李影花,钟宇芳,雷绮霞,等.维持性血液透析患者家庭支持与自我管理的关系[J].中华肾脏病杂志,2021, 37(8): 668-672.D0I:10.3760/cma.j.cn441217-20201224-00099.
[2] Sahathevan S,Khor BH, Ng HM, et al. Understanding de-velopment of malnutrition in hemodialysis patients: a narra-tive review[J]. Nutrients, 2020, 12(10):317-323.D0I:10. 3390/nul 2103147.
[3] Fouque D, Kalantar-Zadeh K, Kopple J, et al.A proposed . nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease[J].Kidney Int, 2008,73(4):391-398.DOI:10.1038/sj.ki.5002585.
[4] Lim HS, Kim HS, Kim JK, et al.Nutritional status and dietary management according to hemodialysis duration[J].Clinical Nutrition Research, 2019, 8(1):28-35.DOI: 10.7762/cnr.2019.8.1.28.
[5] 中国医师协会肾脏内科医师分会,中国中西医结合学会肾脏疾病专业委员会营养治疗指南专家协作组.中国慢性肾脏病营养治疗临床实践指南(2021版)[J]中华医学杂志,2021,101(8):539-559.DOI:10.3760/cma.j.cn112137-20201211-03338.
[6] 邢焕民,吕冬梅,王晓慧,等.术后谵妄风险预测模型的构建及应用[J].中华护理杂志,2019, 54(1):8-13.DOI:10.376l/jissn.0254-1769.2019.01.001.
[7] Kistler BM, Moore LW,Benner D, et al.The international society of renal nutrition and metabolism commentary on the national kidney foundation and academy of nutrition and dietetics KDOQI clinical practice guideline for nutrition in chronic kidney disease[J]. J Ren Nutr, 2021, 31(2): 116-120.DOI: 10.1053/j.jrn.2020.05.002.Epub 2020 Jul 29.
[8] 毕明明,姜美娟.老年维持性血液透析营养不良患者营养状况评估及其相关因素分析[J].中国基层医药, 2021, 28(6):899-903.DOI:10.3760/ema.j.issn.1008-6706.2021.06.021.
[9] 陈学勋,朱子豪,刘志民,等.运用患者主观全面评定法对维持性血液透析患者蛋白能量消耗状态的调查及可干预危险因素分析[J].中国当代医药, 2020, 27(9):149-152.DOI:10.3969/j.issn.1674-4721.2020.09.044.
[10] SáMartins V, Aguiar I, Dias C, et al. Predictors of nutrition-Al and inflammation risk in hemodialysis patients[J]. Clin Nutr,2020,39(6):1878-1884.doi:10.1016/j.clnu.2019.07.029.
[11] Fouque D, Vennegoor M, Wee P, et al. EBPG guideline on .nutrition[J]. Nephrol Dial Transplant, 2007, 22(2): ii45-i-i87.DOI:10.1093/ndt/gfm020.
[12] 童慧娟,徐妙娟.维持性血液透析患者的营养状况及其影响因素[J].解放军护理杂志, 2010, 27(11): 809-811.DOI: 10.3969/j.issn.1008-9993.2010.11.003.
[13] Torreggiani M, Fois A, Chatrenet A, et al. Incremental and personalized hemodialysis start: a new standard of care[J] .Kidney Int Rep.2022,7(5):1049=-061. DOI:10.1016/j.ekir.2022.02.010.
[14] 何万巧,盖薇,周春兰,等.积极心理学视角下维持性血液透析患者生活质量现状及影响因素分析[J].护理学报,2023,30(2):12-16. DOI:10.16460/j.issn1008-969.2023.02.012.
[15] 张政,安逸群,孙丽娜,等成人依恋在维持性血液透析患者恐惧疾病进展与自我管理间的中介效应分析[J].护理学报, 2021, 28(12):43-48.DOl:10.16460/j.issn1008-969.2021.12.043.
[16] Tallman DA, Khor BH, Karupaiah T, et al.Nutritional adequacy of essential nutrients in low protein animal -based and plant-based diets in the United States for chronic kidney disease patients[J ]. J Ren Nutr, 2022, 33(2):249-260. DOI:10.1053/j.jrn.2022.10.007.
[17] 李明珠,詹亚,蒲蕾,等.四川地区维持性血液透析患者肾性贫血达标情况调查[J].肾脏病与透析肾移植杂志,2022,31(4):346-350.DOI:10.3969/j.issn.1006-298X.2022.04.009.
[18] 王晓辉,蔡春天,何娟,等.全段甲状旁腺激素、胎球蛋白A、血肌酐血红蛋白比与慢性肾脏病维持性血液透析患者钙磷代谢紊乱的关系及对颈动脉钙化的预测价值[J].临床肾脏病杂志, 2022, 22(4):277-282.DOI: 10.3969/j.issn.1671-2390.2022.04.003.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[3] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[4] 曹娟, 李方, 于跃, 戴丽, 杨丹丹, 李志华, 徐欣怡, 戴琪, 陈柯宇. 食管癌术后静脉血栓栓塞症风险预测模型的构建及验证[J]. 护理学报, 2024, 31(8): 63-68.
[5] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[6] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[7] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[8] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[9] 王月, 刘国庆, 牛聪影, 张振伟, 孙建, 褚友艾, 秦寒枝. 髋部骨折患者术后30天死亡风险预测模型的范围综述[J]. 护理学报, 2024, 31(24): 51-56.
[10] 杨丽娜, 黄蓉, 姚梅琦, 王竹青, 徐怡婷, 谢佩敏. 产后母乳喂养行为中断风险预测模型的系统评价[J]. 护理学报, 2024, 31(23): 59-65.
[11] 章明阳, 刘京辉, 金雁, 徐文琪, 李斌飞, 黄珊, 杜李百合, 侯亚甜, 李小寒. 围手术期低体温风险预测模型的系统评价[J]. 护理学报, 2024, 31(22): 54-60.
[12] 姜宁宁. 连续性肾脏替代治疗患者低体温发生风险列线图预测模型构建与验证[J]. 护理学报, 2024, 31(19): 65-72.
[13] 杨蓓, 叶红芳, 相卢伟, 路诗雨. 中老年2型糖尿病患者轻度认知障碍风险预测模型的构建与验证[J]. 护理学报, 2024, 31(13): 18-23.
[14] . 轻度认知障碍向阿尔兹海默病进展风险预测模型的系统评价[J]. 护理学报, 2024, 31(12): 47-53.
[15] 欧阳蝶, 许豆豆, 孙燕荣, 陈莹, 吕安康, 吴蓓雯. 基于生活方式相关指标的非肥胖人群非酒精性脂肪肝预测模型的构建[J]. 护理学报, 2024, 31(10): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!