以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (3): 57-62.doi: 10.16460/j.issn1008-9969.2023.03.057

• 循证护理 • 上一篇    下一篇

老年性骨质疏松患者骨折风险预测工具的范围综述

张红霞1, 杨巧巧2, 党晨珀2, 张文芳1, 张晓敏1, 邵转兰1   

  1. 1.甘肃中医药大学护理学院,甘肃 兰州 730000;
    2.中国人民解放军联勤保障部队第九四〇医院 运动医学科,甘肃 兰州 730050
  • 收稿日期:2022-09-30 出版日期:2023-02-10 发布日期:2023-03-14
  • 通讯作者: 杨巧巧(1979-),女,甘肃兰州人,本科学历,主任护师,运动医学科护士长,硕士研究生导师。E-mail:258995846@qq.com
  • 作者简介:张红霞(1998-),女,四川内江人,本科学历,硕士研究生在读,护士。
  • 基金资助:
    甘肃省青年科技基金计划(20JR10RA008); 甘肃省卫生行业科研计划项目(GSWSKY-2019-12)

Fracture risk prediction tools in elderly patients with osteoporosis: a scoping review

ZHANG Hong-xia1, YANG Qiao-qiao2, DANG Chen-po2, ZHANG Wen-fang1, ZHANG Xiao-min1, SHAO Zhuan-lan1   

  1. 1. School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China;
    2. Dept. of Sports Medicine,No.940 Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, China
  • Received:2022-09-30 Online:2023-02-10 Published:2023-03-14

摘要: 目的 综合分析老年性骨质疏松患者骨折风险预测工具,为研究人员开发或引入符合本国国情的预测工具提供参考。方法 采用范围综述方法,检索PubMed、Embase、Web of Science、中国知网、万方数据知识服务平台、维普中文科技期刊数据及中国生物医学文献数据库7个中英文数据库,由2名研究者独立筛选文献和提取数据,并进行偏倚风险及适用性评价。结果 最后纳入18篇英文文献,包括12项预测工具开发研究及6项预测工具效能验证研究,共涉及12个老年性骨质疏松患者骨折风险预测工具,工具类型主要为风险预测模型及风险评估表。结论 老年性骨质疏松患者骨折风险预测工具种类繁多,预测性能良好但总体偏倚风险较高。相关研究人员一方面应对现有的预测工具进行验证及校准,另一方面应基于本土数据开发低偏倚风险、高临床适用性的风险预测工具,为老年性骨质疏松患者的精准健康管理提供参考。

关键词: 老年性骨质疏松, 骨质疏松性骨折, 风险预测, 模型构建, 人口健康管理

Abstract: Objective To comprehensively analyze fracture risk prediction tools in senile osteoporosis patients, and provide reference for researchers to develop or introduce prediction tools in line with national conditions. Methods Scoping review was conducted and we searched 7 Chinese and English databases including PubMed, Embase, Web of Science, CNKI, Wanfang Data Knowledge Service Platform, VIP Chinese scientific journal data and China Biomedical Literature Database for eligible literature. Two researchers screened the literature and conducted data extraction, and assessment of risk of bias and applicability independently. Results Eighteen pieces of English literature were included, including 12 prediction tool development studies and 6 prediction tool efficacy validation studies, involving 12 fracture risk prediction tools in elderly patients with osteoporosis. The types of tools were mainly risk prediction models and risk assessment tables. Conclusion There are various kinds of fracture risk prediction tools for elderly patients with osteoporosis, with good prediction performance, but overall high risk of bias. The existing prediction tools should be verified and calibrated. Local data-based risk prediction tools with low risk of bias and high clinical applicability should be developed, so as to provide reference for the precise health management of elderly patients with osteoporosis.

Key words: senile osteoporosis, osteoporotic fractures, risk assessment, model construction, population health management

中图分类号: 

  • R473.59
[1] 闫坤,张瑞坤,吴雨伦,等.益骨汤治疗老年性骨质疏松症的临床疗效评价[J].中国骨质疏松杂志,2022,28(5):675-679. DOI:10.3969/j.issn.1006-7108.2022.05.010.
[2] 中华医学会骨质疏松和骨矿盐疾病分会.中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):317-318. DOI:10.3969/j.issn.1674-2591.2019.04.001.
[3] Falaschi P, Marsh D, editors. Orthogeriatrics: The management of older patients with fragility fractures[M]. Cham (CH): Springer, 2021. DOI:10.1007/978-3-030-48126-1.
[4] Akkawi I, Zmerly H.Osteoporosis: current concepts[J].Joints, 2018,6(2):122-127. DOI: 10.1055/s-0038-1660790.
[5] Migliorini F, Giorgino R, Hildebrand F, et al.Fragility fractures: risk factors and management in the elderly[J]. Medicina(Kaunas),2021,57(10):1119.DOI:10.3390/medicina57101119.
[6] 夏维波. 骨质疏松症防治中的难点和应对[J].国际内分泌代谢杂志,2022,42(3):165-169.DOI:10.3760/cma.j.cn121383-20220406-04011.
[7] 戴婷,马彩莉,张孟喜,等.老年人骨折风险评估工具的研究进展[J].护理学杂志,2020,35(12):106-110.?DOI:10.3870/j.issn.1001-4152.2020.12.106.
[8] 陈香萍,张奕,庄一渝,等.PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744. DOI:10.7507/1672-2531.201910087.
[9] 邬兰,张永,曾宪涛.QUADAS-2在诊断准确性研究的质量评价工具中的应用[J].湖北医药学院学报,2013,32(3):201-208. DOI:10.7543/j.issn.1006-9674.2013.03.004.
[10] Nguyen ND, Frost SA, Center JR, et al.Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks[J]. Osteoporos Int, 2008,19(10):1431-1444. DOI:10.1007/s00198-008-0588-0.
[11] Kanis JA, Johnell O, Oden A, et al.FRAX and the assessment of fracture probability in men and women from the UK[J]. Osteoporos Int, 2008,19(4):385-397. DOI:10.1007/s00198-007-0543-5.
[12] Fujiwara S, Nakamura T, Orimo H, et al.Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX)[J]. Osteoporos Int, 2008,19(4):429-435. DOI:10.1007/s00198-007-0544-4.
[13] Hippisley-Cox J, Coupland C.Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores[J]. BMJ, 2009,339:b4229. DOI:10.1136/bmj.b4229.
[14] Leslie WD, Lix LM, Johansson H, et al.Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration[J]. J Bone Miner Res, 2010,25(11):2350-2358. DOI:10.1002/jbmr.123.
[15] Kim HY, Jang EJ, Park B, et al.Development of a Korean Fracture Risk Score(KFRS) for predicting osteoporotic fracture risk: analysis of data from the Korean National Health Insurance Service[J]. PLoS One, 2016,11(7):e0158918. DOI:10.1371/journal.pone.0158918.
[16] Francesco L, Elisa B, Raffaella M, et al.Assessing risk of osteoporotic fractures in primary care: development and validation of the FRA-HS algorithm[J]. Calcif Tissue Int, 2017,100(6):537-549. DOI:10.1007/s00223-016-0230-7.
[17] Rubin KH, Möller S, Holmberg T, et al.A New Fracture Risk Assessment Tool (FREM) based on public health registries[J]. J Bone Miner Res, 2018,33(11):1967-1979.DOI:10.1002/jbmr.3528.
[18] Lesnyak O, Ismailov S, Shakirova M, et al.Epidemiology of hip fracture and the development of a FRAX model for Uzbekistan[J]. Arch Osteoporos, 2020,15(1):119. DOI:10.1007/s11657-020-00792-7.
[19] Saleh YAL, Sulimani RA, Alomary S, et al.Incidence of hip fracture in Saudi Arabia and the development of a FRAX model[J]. Arch Osteoporos, 2022,17(1):56.DOI:10.1007/s11657-022-01085-x.
[20] Sandhu SK, Nguyen ND, Center JR, et al.Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram[J]. Osteoporos Int, 2010,21(5):863-871. DOI:10.1007/s00198-009-1026-7.
[21] Collins GS, Mallett S, Altman DG.Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFracture Scores[J]. BMJ, 2011,342:d3651. DOI:10.1136/bmj.d3651.
[22] Tamaki J, Iki M, Kadowaki E, et al.Fracture risk prediction using FRAX® : a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) cohort study[J]. Osteoporos Int, 2011,22(12):3037-3045. DOI:10.1007/s00198-011-1537-x.
[23] Wang J, Wang X, Fang Z, et al.The effect of FRAX on the prediction of osteoporotic fractures in urban middle-aged and elderly healthy Chinese adults[J]. Clinics (Sao Paulo), 2017,72(5):289-293. DOI:10.6061/clinics/2017(05)06.
[24] Singh V, Pal AK, Biswas D, et al.Identification of patients at high risk of fragility fractures in an Indian clinical setting using FRAX[J]. Arch Osteoporos, 2020,15(1):131. DOI:10.1007/s11657-020-00807-3.
[25] Skjødt MK, Möller S, Hyldig N, et al.Validation of the Fracture Risk Evaluation Model (FREM) in predicting major osteoporotic fractures and hip fractures using administrative health data[J]. Bone, 2021,147:115934. DOI:10.1016/j.bone.2021.115934.
[26] Hsieh CI, Zheng K, Lin C, et al.Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning[J]. Nat Commun, 2021,12(1):5472. DOI:10.1038/s41467-021-25779-x.
[27] Leslie WD, Berger C, Langsetmo L, et al.Construction and validation of a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts[J]. Osteoporos Int, 2011,22(6):1873-1883. DOI:10.1007/s00198-010-1445-5.
[28] Austin PC, Steyerberg EW.Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models[J]. Stat Methods Med Res, 2017,26(2):796-808. DOI:10.1177/0962280214558972.
[29] 马远征,王以朋,刘强,等.中国老年骨质疏松诊疗指南(2018)[J].中国老年学杂志,2019,39(11):2557-2575.DOI:10.3969/j.issn.1005-9202.2019.11.001.
[30] Beaudoin C, Moore L, Gagné M, et al.Performance of predictive tools to identify individuals at risk of non-traumatic fracture: a systematic review, meta-analysis, and meta-regression[J]. Osteoporos Int, 2019,30(4):721-740. DOI:10.1007/s00198-019-04919-6.
[31] 夏维波. 骨质疏松症高骨折风险患者的识别与防治策略[J].中华骨质疏松和骨矿盐疾病杂志,2020, 13(6):493-498. DOI:10.3969/j.issn.1674-2591.2020.06.001.
[32] Ho-Le TP, Center JR, Eisman JA, et al.Prediction of bone mineral density and fragility fracture by genetic profiling[J]. J Bone Miner Res, 2017,32(2):285-293. DOI:10.1002/jbmr.2998.
[33] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021, 28(7):30-34. DOI:10.16460/j.issn1008-9969.2021.07.030.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[3] 曹娟, 李方, 于跃, 戴丽, 杨丹丹, 李志华, 徐欣怡, 戴琪, 陈柯宇. 食管癌术后静脉血栓栓塞症风险预测模型的构建及验证[J]. 护理学报, 2024, 31(8): 63-68.
[4] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[5] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[6] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[7] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[8] 史婷婷, 李婷, 黄友鹏, 赵媛, 朱晓丽, 周梦娟, 陈云梅. 2型糖尿病患者合并骨质疏松风险预测模型的范围综述[J]. 护理学报, 2024, 31(1): 52-57.
[9] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[10] 张海燕, 于卫华, 张利, 任影, 郑俊俊. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J]. 护理学报, 2023, 30(22): 13-19.
[11] 方敏, 高兴莲, 柯稳, 王曾妍, 梁元元. 腹部消化系统手术患者术中低体温风险预测模型的构建与验证[J]. 护理学报, 2023, 30(20): 58-62.
[12] 王若仙, 何斌, 王玉环, 刘柯汝, 唐雪婷, 赵淑华, 魏杉杉. 社区老年人骨质疏松性骨折风险感知偏差现况及影响因素分析[J]. 护理学报, 2023, 30(15): 1-5.
[13] 张侍玉, 王玉然, 赵姝姝, 王杰敏. 头颈癌放疗患者重度放射性口腔黏膜炎风险预测模型的构建与验证[J]. 护理学报, 2023, 30(10): 68-72.
[14] 庞雪滢, 胡少华, 李慧, 尹丹乔, 张尚鑫, 杨晓东. 直肠癌患者保肛术1年后发生重度低位前切除综合征列线图预测模型的构建[J]. 护理学报, 2022, 29(11): 5-10.
[15] 郭盛丽, 袁薇, 朱婷, 林威娜, 陈晓容, 夏美燕. 患者结肠镜检查前肠道准备失败风险预测模型的系统评价[J]. 护理学报, 2022, 29(1): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!