以质量求发展,以服务铸品牌

护理学报 ›› 2022, Vol. 29 ›› Issue (3): 12-18.doi: 10.16460/j.issn1008-9969.2022.03.012

• 研究生园地 • 上一篇    下一篇

决策树C5.0与Logistic回归对产后压力性尿失禁预测性能的比较

焦子珊, 张新月, 沙凯辉   

  1. 滨州医学院 护理学院,山东 滨州 256600
  • 收稿日期:2021-08-04 发布日期:2022-03-04
  • 通讯作者: 沙凯辉(1980-),女,山东滨州人,博士研究生,硕士研究生导师,副教授。E-mail:skhui328175@163.com
  • 作者简介:焦子珊(1996-),女,山东日照人,本科学历,硕士研究生在读,护士。

Value of Risk Assessment Models Based on Decision Tree C5.0 or Logistic Regression in Predicting Postpartum Stress Urinary Incontinence

JIAO Zi-shan, ZHANG Xin-yue, SHA Kai-hui   

  1. School of Nursing, Binzhou Medical College, Binzhou 256600, China
  • Received:2021-08-04 Published:2022-03-04

摘要: 目的 应用决策树C5.0和Logistic回归分别建立产后压力性尿失禁的风险预测模型,比较2种模型的预测效果。方法 选取2020年7月—2021年1月于山东省某三级甲等医院产后康复门诊就诊的女性505例,采用问卷调查法筛查产后压力性尿失禁并获取产妇的一般资料,采用生物反馈治疗仪评估产妇的盆底肌电值。将所有数据按照7∶3的比例建立训练集与测试集(训练集450例,测试集145例),运用决策树C5.0及Logistic回归建立产后压力性尿失禁的风险预测模型,采用特异度、灵敏度、准确率、阴性预测值、阳性预测值、约登指数和受试者工作特征曲线的曲线下面积对2种模型的预性能进行比较。结果 在训练集中,决策树C5.0与Logistic回归的准确度分别为98.9%、85.6%,灵敏度为94.7%、48.7%,特异度为100.0%、95.4%,阳性预测值为100.0%、74.0%,阴性预测值为98.6%、87.4%,约登指数为94.7%,44.1%,受试者工作特征曲线的曲线下面积为0.974、0.721,2种模型的受试者工作特征曲线的曲线下面积相比较差异具有统计学意义(P<0.05);在测试集中,决策树C5.0和Logistic回归的准确度为87.6%、82.8%,灵敏度为78.6%、46.4%,特异度为89.7%、91.5%,阳性预测值为64.7%、56.5%,阴性预测值为94.6%、87.7%,约登指数为68.3%、37.9%,受试者工作特征曲线的曲线下面积为0.842、0.689,2种模型的受试者工作特征曲线的曲线下面积相比较差异具有统计学意义(P<0.05)。结论 决策树C5.0对产后压力性尿失禁的预测性能优于Logistic回归。

关键词: 决策树C5.0, Logistic回归, 产后, 压力性尿失禁, 预测模型

Abstract: Objective To To compare the value of risk assessment models based on decision tree C5.0 or logistic regression in predicting postpartum stress urinary incontinence. Methods A total of 505 females in postpartum recovery clinic of one tertiary grade-A hospital in Shandong Province from July 2020 to January 2021 were selected as research objects. They were surveyed for general information and the data of postpartum stress urinary incontinence. An EEG feedback device was used to test the function of pelvic floor. All the data were divided into training set (n=450) and test set (n=145). Risk assessment models established with decision tree C5.0 or logistic regression were established respectively and their predictive value was assessed in terms of specificity, sensibility, accuracy, negative predictive value, positive predictive value, Youden index, and area under the curve (AUC) of receiver operating characteristic curve (ROC). Results In the training set, the accuracy, sensibility, specificity, positive predictive value, negative predictive value, Youden index and AUC of the two risk assessment models were 98.9% vs 85.6%; 94.7% vs 48.7%; 100.0% vs 95.4%; 100.0% vs 74.0%; 98.6% vs 87.4%; 94.7% vs 44.1% and 0.974 vs 0.721 respectively. The AUC of the two models indicated statistical significance (P<0.05). In test set, the accuracy, sensibility, specificity, positive predictive value, negative predictive value, Youden index and AUC of the two risk assessment models were 87.6% vs 82.8%; 78.6% vs 46.4%; 89.7% vs 91.5%; 64.7% vs 56.5%; 94.6% vs 87.7%; 68.3% vs 37.9% and 0.842 vs 0.689 respectively. The AUC of the two models showed statistical significance (P<0.05). Conclusion Decision tree C5.0-based risk assessment model presents better performance in predicting postpartum stress urinary incontinence than the model established with logistic regression.

Key words: decision tree C5.0, logistic regression, postpartum, stress urinary incontinence, predictive model

中图分类号: 

  • R473.71
[1] Qi X, Shan J, Peng L.The Effect Of a Comprehensive Care and Rehabilitation Program on Enhancing Pelvic Floor Muscle Functions and Preventing Postpartum Stress Urinary Incontinence[J]. Medicine (Baltimore). 2019, 98(35):e16907. DOI:10.1097/MD.0000000000016907.
[2] Surkan PJ, Sakyi KS, Christian P, et al.Risk of Depressive Symptoms Associated with Morbidity in Postpartum Women in Rural Bangladesh[J]. Matern Child Health J. 2017, 21(10):1890-1900. DOI:10.1007/s10995-017-2299-7.
[3] 高燕,许方蕾. 老年女性压力性尿失禁患者盆底肌训练依从性的研究进展[J]. 护理学报,2018, 25(22):33-37. DOI:10.16460/j.issn1008-9969.2018.22.033.
[4] Huang L, Zhang SW, Wu SL, et al.The Chinese Version of ICIQ: A Useful Tool in Clinical Practice and Research on Urinary Incontinence[J]. NeurourolUrodyn, 2008,27(6):522-524. DOI:10.1002/nau.20546.
[5] 中华医学会妇产科学分会妇科盆底学组. 女性压力性尿失禁诊断和治疗指南(2017)[J]. 中华妇产科杂志,2017,52(5):289-293.DOI:10.3760/cma.j.issn.0529567x.2017.05.001.
[6] Giugale LE, Moalli PA, Canavan TP, et al.Prevalence and Predictors of Urinary Incontinence at 1 Year Postpartum[J]. Female Pelvic Med Reconstr Surg, 2021, 27(2):e436-e441. DOI:10.1097/SPV.0000000000000955.
[7] Johannessen HH, Stafne SN,Falk RS.Prevalence and Predictors of Double Incontinence 1 Year After First Delivery[J]. Int Urogynecol J,2018,29(10):1529-1535.DOI:10.1007/s00192-018-3577-7.
[8] 石薇,牛晓宇,陈悦悦,等. 成都地区产后早期尿失禁的危险因素分析[J]. 四川大学学报(医学版),2019, 50(4):598-603. DOI:10.13464/j.scuxbyxb.2019.04.028.
[9] 楼叶琳,胡洋,周一波,等. 产后压力性尿失禁风险列线图的建立与验证[J]. 中华泌尿外科杂志,2021,42(8):627-632. DOI:10.3760/cma.j.cn112330-20200422-00320.
[10] 王青,于晓杰,陈庚敏,等.产后压力性尿失禁发生的影响因素研究[J].中国妇产科临床杂志,2019, 20(2):112-115. DOI:10.13390/j.issn.1672-1861.2019.02.007.
[11] 齐小文, 单娟, 彭蕾,等. 产后压力性尿失禁发生风险预测因素的综合分析[J]. 解放军护理杂志, 2019, 36(5):29-32. DOI:10.3969/j.issn.1008-9993.2019.05.007.
[12] Nunes EFC,Sampaio LMM,Biasotto-Gonzalez DA.Biofeedback for Pelvic Floor Muscle Training in Women with Stress Urinary Incontinence:a Systematic Review with Meta-Analysis[J]. Physiotherapy. 2019,105(1):10-23. DOI:10.1016/j.physio.2018.07.012.
[13] Schreiber Pedersen L, Lose G, Høybye MT.Prevalence of Urinary Incontinence among Women and Analysis of Potential Risk Factors in Germany and Denmark[J]. Acta Obstet Gynecol Scand, 2017,96(8):939-948. DOI:10.1111/aogs.13149.
[14] 王梅杰,丁子钰,刘会范,等. 体质量管理对女性尿失禁疗效的Meta分析[J]. 安徽医药, 2020, 24(10):1913-1919. DOI:10.3969/j.issn.1009-6469.2020.10.002.
[15] Wang K, Xu X, Jia G, et al.Risk Factors for Postpartum Stress Urinary Incontinence:a Systematic Review and Meta-analysis[J]. Reprod Sci. 2020,27(12):2129-2145. DOI:10.1007/s43032-020-00254-y.
[16] Novo R, Perez-Rios M, Santiago-Pérez MI.Prevalence and Associated Risk Factors of Urinary Incontinence and Dyspareunia During Pregnancy and after Delivery[J]. Eur J Obstet Gynecol Reprod Biol,2020,245:45-50.DOI:10.1016/j.ejogrb.2019.10.020.
[17] 郭正军,宋景贵,王静.C5.0决策树模型在严重精神障碍患者服药依从性预测中的探讨[J].现代预防医学,2021,48(1):110-113;189.
[18] 王海东,张璐,王洁.C5.0决策树与RBF神经网络模型用于急性缺血性脑卒中出血性转化的风险预测性能比较[J].中华疾病控制杂志,2019,23(2):227-232.DOI:10.16462/ j.cnki. zhjbkz.2019.02.021.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[3] 周国倩, 金学勤, 陆玉芳, 裘艳雯, 刘慧扬. 更年期女性症状特征的潜在类别分析[J]. 护理学报, 2025, 32(2): 19-24.
[4] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[5] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[6] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[7] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[8] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[9] 王月, 刘国庆, 牛聪影, 张振伟, 孙建, 褚友艾, 秦寒枝. 髋部骨折患者术后30天死亡风险预测模型的范围综述[J]. 护理学报, 2024, 31(24): 51-56.
[10] 肖霄, 张煊丽, 张云漪, 谢梓洋. 代际共同养育关系对0~3岁婴幼儿母亲抑郁的影响机制研究[J]. 护理学报, 2024, 31(24): 57-63.
[11] 杨丽娜, 黄蓉, 姚梅琦, 王竹青, 徐怡婷, 谢佩敏. 产后母乳喂养行为中断风险预测模型的系统评价[J]. 护理学报, 2024, 31(23): 59-65.
[12] 章明阳, 刘京辉, 金雁, 徐文琪, 李斌飞, 黄珊, 杜李百合, 侯亚甜, 李小寒. 围手术期低体温风险预测模型的系统评价[J]. 护理学报, 2024, 31(22): 54-60.
[13] 郭赛男, 蒋慧萍, 王子豪, 梁秋曼, 史婷奇. 基于潜在狄利克雷分布主题模型的初产妇产后健康信息需求研究[J]. 护理学报, 2024, 31(19): 19-23.
[14] 姜宁宁. 连续性肾脏替代治疗患者低体温发生风险列线图预测模型构建与验证[J]. 护理学报, 2024, 31(19): 65-72.
[15] 杨蓓, 叶红芳, 相卢伟, 路诗雨. 中老年2型糖尿病患者轻度认知障碍风险预测模型的构建与验证[J]. 护理学报, 2024, 31(13): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!