以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (23): 59-65.doi: 10.16460/j.issn1008-9969.2024.23.059

• 循证护理 • 上一篇    下一篇

产后母乳喂养行为中断风险预测模型的系统评价

杨丽娜1,2, 黄蓉3, 姚梅琦1, 王竹青1, 徐怡婷2,3, 谢佩敏2   

  1. 1.上海交通大学医学院附属第六人民医院 护理部, 上海 201306;
    2.同济大学医学院, 上海 200092;
    3.同济大学附属妇产科医院 护理部, 上海 201204
  • 收稿日期:2024-06-12 出版日期:2024-12-10 发布日期:2025-01-08
  • 通讯作者: 黄蓉(1986-),女,上海人,博士,副主任护师,护理部副主任。E-mail: huangrong_1986@hotmail.com
  • 作者简介:杨丽娜(1983-),女,辽宁大连人,本科学历,硕士研究生在读,副主任护师,科护士长。
  • 基金资助:
    中国卫生人才培养项目2023-2024年度研究课题(RCLX2320052);中华医学会杂志社2022-2023年护理学科研究课题(CMAPH-NRI2022011);上海交通大学医学院2024年度护理科研项目(Jyhz2428);上海市第六人民医院2023年度医院管理健康联合体科研专项(lylht202302);上海市第一妇婴保健院2022年人才蓄水池计划

Risk prediction models for postpartum breastfeeding behavior interruption: a systematic review

YANG Li-na1,2, HUANG Rong3, YAO Mei-qi1, WANG Zhu-qing1, XU Yi-Ting2,3, XIE Pei-min2   

  1. 1. Dept. of Nursing Administration, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China;
    2. School of Medicine, Tongji University, Shanghai 200092, China;
    3. Dept. of Nursing Administration, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
  • Received:2024-06-12 Online:2024-12-10 Published:2025-01-08

摘要: 目的 系统检索和评价产后母乳喂养行为中断的风险预测模型,为临床开发、优化、使用合适的模型提供参考依据。方法 检索Web of Science、Cochrane Library、PubMed、Embase、CINAHL、中国知网、中国生物医学文献数据库、维普以及万方数据库中有关母乳喂养行为中断的风险预测模型研究,检索时限为建库至2024年4月17日。2名研究者先独立筛选文献并提取数据,采用预测模型研究的偏倚风险评估工具(prediction model risk of bias assessment tool,PROBAST)评价纳入的研究。结果 共纳入13项研究,涉及18个模型。11项研究报告了区分度,7项研究报告了校准方法,6项研究进行内部验证,3项研究进行外部验证,1项研究采用内外部验证结合的方式。母亲的年龄、既往喂养经验、母乳喂养自我效能、多胎妊娠是报告中最常见的预测因子。6项研究适用性较好,但整体偏倚风险较高。结论 母乳喂养行为中断风险预测模型的研究尚处于发展阶段。模型的偏倚风险整体较高,主要集中在数据分析部分,未来应进一步规范报告流程与统计分析,并通过外部验证评估模型在临床实践中的有效性和可行性。

关键词: 母乳喂养中断, 预测模型, 系统评价, 循证护理

Abstract: Objective To systematically search and evaluate the risk prediction models of postpartum breastfeeding behavior interruption, and to provide reference for clinical development, optimization and application of appropriate models. Methods The literature on risk prediction models of breastfeeding behavior interruption were searched in Web of Science, Cochrane Library, PubMed, Embase, CINAHL, CNKI, CBM, VIP and Wanfang Data. The retrieval time spanned from the inception to April 17, 2024. Two researchers independently screened the literature and extracted data, and the included studies were evaluated using the prediction model risk of bias assessment tool (PROBAST). Results A total of 13 studies were included, involving 18 models. Differentiation was reported in 11 studies; calibration methods were reported in 7 studies; internal validation was performed in 6 studies; external validation was performed in 3 studies, and a combination of internal and external validation was used in 1 study. Maternal age, previous feeding experience, breastfeeding self-efficacy, and multiple pregnancies were the most common predictors reported. Six studies had good applicability but a higher risk of overall bias. Conclusion The research on risk prediction models of breastfeeding behavior interruption is still in the development stage. The risk of bias of the models is generally high, which is mainly reflected in data analysis. In the future, the reporting process and statistical analysis should be further standardized, and the effectiveness and feasibility of the model in clinical practice should be evaluated through external verification.

Key words: breastfeeding interruption, predictive model, systematic review, evidence-based nursing

中图分类号: 

  • R473.71
[1] Victora CG, Bahl R,Barros AJ,et al.Breastfeeding in the 21st century:epidemiology, mech-anisms, and lifelong effect[J].Lancet,2016,387(10017):475-490.DOI:10.1016/S0140-6736(15)01024-7.
[2] Rollins NC, Bhandari N, Hajeebhoy N, et al.Why invest,and what it will take to improve breastfeeding practices?[J].Lancet,2016,387(10017):491-504.DOI:10.1016/S0140-6736(15)01044-2.
[3] 曹译丹,宫可心,朱贝贝,等.母乳喂养对降低宫内暴露高血糖子代超重或肥胖发生风险的Meta分析[J].中国循证医学杂志,2022, 22(10):1167-1174.DOI:10.7507/1672-2531.2022 03128.
[4] Tseng PT,Yen CF,Chen YW,et al.Maternal breastfeeding and attention-deficit/hyperactivit-y disorder in children:a Meta-analysis[J].Eur Child Adolesc Psychiatry,2019,28(1):19-30.DOI:10.1007/s00787-018-1182-4.
[5] Fan D, Xia Q,Lin D,et al.Role of breastfeeding on maternal and childhood cancers:an umbrella review of Meta-analyses[J].J Glob Health,2023,13:04067.DOI:10.7189/jogh.13.04067.
[6] World Health Organization(WHO). The optimal duration of exclusive breastfeeding: report of an expert consultation[EB/OL].(2001-01-01)[2024-05-26].https://www.who.int/publications-detail-redirect/WHO-NHD-01.09.
[7] World Health Organization(WHO). Joint statement by UNICEF Executive Director and WHO Director-General on the occasion of World Breastfeeding Week[EB/OL].(2023-08-01)[2024-03-18].https://www.who.int/news/item/01-08-2023-joint-statement-by-unicef-exec-utive-director-catherine-russell-and-who-director-general-dr-tedros-adhanom-ghebreyesus-on-the-occasion-of-world-breastfeeding-week.
[8] Pérez-Escamilla R, Tomori C, Hernández-Cordero S, et al.Breastfeeding: crucially important, but increasingly challenged in a market-driven world[J].Lancet,2023,401(10375):472-485.DOI:10.1016/S0140-6736(22)01932-8.
[9] 张蕊,郑黎强,潘国伟.疾病发病风险预测模型的应用与建立[J].中国卫生统计,2015,32(4):724-726.
[10] 孙菲,刘敏,胡珊珊,等.基于Meta分析构建早产儿母亲泌乳建立风险预测评分模型[J].护理学报,2023,30(23):1-5.DOI:10.16460/j.issn1008-9969.2023.23.001.
[11] 邢春凤,李国新,张广清,等.产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J].护理学报,2024,31(3):6-11.DOI:10.16460/j.issn1008-9969.2024.03.006.
[12] 王丽云,张明慧,张新月,等.产后压力性尿失禁风险预测模型的系统评价[J].护理学报,2024, 31(3):57-62.DOI:10.16460/j.issn1008-9969.2024.03.057.
[13] Moons KG,Hooft L,Williams K,et al.Implementing systematic reviews of prognosis studies in Cochrane[J]. Cochrane Database Syst Rev,2018, 10(10):ED000129. DOI:10.1002/14651858.ED000129.
[14] Moons KG, de Groot JA, Bouwmeester W,et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J]. PLoS Med,2014, 11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[15] Moons KGM, Wolff RF,Riley RD,et al.PROBAST:A tool to assess risk of bias and app-licability of prediction model studies: explanation and elaboration[J]. Ann Intern Med,2019,170(1):W1-W33.DOI:10.7326/M18-1377.
[16] Berra S,Rajmil L,Passamonte R,et al.Premature cessation of breastfeeding in infants:development and evaluation of a predictive model in two Argentinian cohorts:the CLAC-YD study,1993-1999.Córdoba lactation, feeding, growth and development study[J]. Acta Paediatr (Oslo,Norway:1992),2001,90(5):544-551.DOI:10.1080/080352501750197692.
[17] 赵宏林,侯金萍,佟伟军.母乳喂养影响因素的对数线性模型分析[J].数理医药学杂志,2006(1):5-7.DOI:10.3969/j.issn.1004-4337.2006.01.003.
[18] Kronborg H,Væth M, Olsen J, et al.Early breastfeeding cessation: validation of a prognostic breastfeeding score[J].Acta Paediatr, 2007, 96(5):688-692.DOI:10.1111/j.1651-2227.2007. 00245.x.
[19] 任海燕,梁雨,左彭湘.基于logistic回归与决策树模型的母乳喂养影响因素分析[J].中国卫生统计, 2019,36(4):532-534.DOI:CNKI:SUN:ZGWT.0.2019-04-014.
[20] Kronborg H,Vaeth M.Validation of the Breastfeeding Score-a simple screening tool to predict breastfeeding duration[J].Nutrients,2019,11(12):2852.DOI:10.3390/nu11122852.
[21] Wang Y,Shan C,Zhang Y,et al.Early recognition of the preference for exclusive breastfe-eding in Current China: a prediction model based on Decision Trees[J].Sci Rep,2020,10(1):6720.DOI:10.1038/s41598-020-63073-w.
[22] Ballesta-Castillejos A, Gómez-Salgado J,Rodríguez-Almagro J,et al.Development and vali-dation of a predictive model of exclusive breastfeeding at hospital discharge:retrospective cohort study[J].Int J Nurs Stud,2021,117:103898.DOI:10.1016/j.ijnurstu.2021.103898.
[23] Silva MDB,de Oliveira RVC,da Silveira Barroso Alves D,et al.Predicting risk of early discontinuation of exclusive breastfeeding at a Brazilian referral hospital for high-risk neonates and infants:a decision-tree analysis[J].Int Breastfeed J,2021,16(1):2.DOI:10.1186/s13006-020-00349-x.
[24] Li JY, Huang YY,Huang Y,et al.Development of a breastfeeding duration risk nomogram for use in postpartum Chinese women[J].Res Nurs Health,2022,45(1):94-107.DOI:10.1002/nur.22203.
[25] 童小燕,洪艺玲,刘巧玉,等.产后2个月内非纯母乳喂养风险预测评分模型的构建和验证[J].现代医学,2022,50(8):1038-1045.DOI:10.3969/j.issn.1671-7562.2022.08.018.
[26] Gabay ZP, Gondwe KW, Topaz M.Predicting risk for early breastfeeding cessation in Israel[J]. Matern Child Health J,2022,26(6):1261-1272.DOI:10.1007/s10995-021-03292-3.
[27] 吕倩,付文君,张静娜,等.产后早期非母乳喂养影响因素分析及列线图预测模型建立[J].中国计划生育学杂志,2023,31(6):1352-1356.DOI:10.3969/j.issn.1004-8189.2023.06.020.
[28] Huang R,Wan Y,Yao X,et al.Predictive factors of exclusive breastfeeding attrition at week 6 post-partum among mothers of preterm infants based on the theory of planned behaviour[J].Matern Child Nutr,2023,19(2):e13470.DOI:10.1111/mcn.13470.
[29] Peduzzi P, Concato J,Kemper E,et al.A simulation study of the number of events per variable in logistic regression analysis[J].J Clin Epidemiol,1996,49(12):1373-1379.DOI:10.1016/s0895-4356(96)00236-3.
[30] Collins GS,Ogundimu EO,Altman DG.Sample size considerations for the external valid-ation of a multivariable prognostic model:a resampling study[J]. Stat Med,2016,35(2):214-226.DOI:10.1002/sim.6787.
[31] Van Calster B,Nieboer D,Vergouwe Y,et al.A calibration hierarchy for risk models was defined:from utopia to empirical data[J]. J Clin Epidemiol, 2016, 74:167-176.DOI:10.1016/j.jclinepi.2015.12.005.
[32] Altman DG,Royston P.The cost of dichotomising continuous variables[J]. BMJ,2006,332(7549):1080.DOI:10.1136/bmj.332.7549.1080.
[33] Collins GS, Ogundimu EO, Cook J A,et al.Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model[J]. Stat Med,2016,35(23):4124-4135.DOI:10.1002/sim.6986.
[34] Whiting PF, Rutjes AW,Westwood ME,et al.QUADAS-2:a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med,2011, 155(8):529-536.DOI:10.7326/0003-4819-155-8-201110180-00009.
[35] Vergouwe Y,Royston P,Moons KGM,et al.Development and validation of a prediction model with missing predictor data:a practical approach[J]. J Clin Epidemiol, 2010,63(2):205-214.DOI:10.1016/j.jclinepi.2009.03.017.
[36] Moons KG,Royston P,Vergouwe Y,et al.Prognosis and prognostic research:what,why,and how?[J].BMJ,2009,338:b375.DOI:10.1136/bmj.b375.
[37] Snell KIE, Levis B, Damen JAA, et al.Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and Meta-analyses (TRIPOD-SRMA)[J]. BMJ, 2023(381):e073538.DOI:10.1136/bmj-2022-073538.
[1] 张静, 彭焕椽, 陈佳, 鲁永锦, 刘克玄, 侯晓敏. 成人体外循环心脏手术患者预防手术部位感染的最佳证据总结[J]. 护理学报, 2025, 32(4): 41-47.
[2] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[3] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[4] 李若雨, 刘鑫, 林萍, 陈丹, 林桦. 出院患者用药安全管理的最佳证据总结[J]. 护理学报, 2025, 32(3): 50-55.
[5] 杨小娟, 毛孝容, 王静, 江华, 李蓉, 樊宇, 文青, 李林章, 陈晓容. 成人重度烧伤患者早期肠内营养管理的最佳证据总结[J]. 护理学报, 2025, 32(3): 56-61.
[6] 刘硕怡, 熊莉娟, 李凌, 王玉梅, 何嘉, 李鑫, 袁淑蕾, 郭雪琴, 王暘婧, 张慧娟. 老年住院患者衰弱预防及管理临床实践指南的质量评价及内容分析[J]. 护理学报, 2025, 32(2): 50-55.
[7] 李嘉琪, 莫文娟, 王一棋, 王洁, 李梦楠, 刘兴, 冯佳. 基于COSMIN方法对慢性疼痛患者恐动症坦帕评分表的系统评价[J]. 护理学报, 2025, 32(2): 56-62.
[8] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[9] 闫亚铃, 乐美妮, 姚桃琴, 王雪莲, 姜建玲, 辛艺. 老年胃肠肿瘤患者围手术期衰弱管理方案的构建[J]. 护理学报, 2025, 32(2): 74-78.
[10] 陈洁, 孟庆童, 刘惊今, 吴艳妮. 基于指南的慢性心力衰竭患者运动康复科普手册研制[J]. 护理学报, 2024, 31(9): 36-41.
[11] 符路路, 解艺璇, 王玥, 魏巍, 张传英, 朱宇. 新生儿操作性疼痛听觉刺激干预的证据总结[J]. 护理学报, 2024, 31(9): 42-47.
[12] 纪锐婷, 林丹娜, 刘小成, 李婷婷, 谢映梅, 胡冰, 应文娟. 早产儿初乳口腔免疫疗法的最佳证据总结[J]. 护理学报, 2024, 31(8): 37-42.
[13] 余璐, 黄晓沁, 刘琳, 袁嘉敏, 邬青. 心力衰竭患者30天非计划性再入院风险预测模型的系统评价[J]. 护理学报, 2024, 31(8): 43-48.
[14] 张小莉, 杨鑫玉, 肖宇, 刘春燕, 张璐, 伍晓琴, 黄月霖, 傅静. 晚期癌症患者代理决策者安宁疗护决策后悔研究的范围综述[J]. 护理学报, 2024, 31(8): 49-54.
[15] 周毅峰, 杨继平, 胡正中, 袁浩. 肝癌切除手术患者目标导向性血糖监测的证据总结[J]. 护理学报, 2024, 31(7): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!