以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (6): 56-61.doi: 10.16460/j.issn1008-9969.2024.06.056

• 循证护理 • 上一篇    下一篇

机械通气患者衰弱风险预测模型的系统评价

周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫   

  1. 成都中医药大学 护理学院,四川 成都 610032
  • 收稿日期:2024-01-15 出版日期:2024-03-25 发布日期:2024-04-08
  • 通讯作者: 余雨枫(1968-),女,重庆人,本科学历,副教授,硕士研究生导师,副院长。E-mail:19902026@cdutcm.edu.cn
  • 作者简介:周越(1991-),女,四川成都人,本科学历,硕士研究生在读,护士。

Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review

ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng   

  1. School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
  • Received:2024-01-15 Online:2024-03-25 Published:2024-04-08

摘要: 目的 系统评价机械通气患者衰弱风险预测模型。方法 检索PubMed、Web of Science、Embase、Cochrane Library、知网、万方和维普数据库,搜集关于机械通气患者衰弱风险预测模型的研究,检索时限为建库至2023年12月。由2名研究者独立筛选文献、提取资料并评价纳入文献的偏倚风险和适用性。结果 共纳入16篇文献。纳入模型的受试者工作特征曲线下面积为0.710~0.926。偏倚风险评估显示模型均存在高偏倚风险,适用性较好,出现频次前5个预测因子依次为机械通气时间、年龄、急性生理与慢性健康评估II评分、血乳酸水平和多器官功能障碍。6个验证模型的合并曲线下面积(Area Under Curve, AUC)值为0.800(95%CI:0.740-0.850),表明具有良好的区分度。结论 机械通气患者衰弱风险预测模型整体预测性能较好,但在数据来源、构建设计和统计分析方面有待进一步优化。未来应对现有模型开展外部验证或开发性能优良的高质量预测模型。

关键词: 机械通气, 获得性衰弱, 重症监护室, 风险预测模型, 系统评价

Abstract: Objective To conduct a systematic evaluation of prediction models for the risk of acquired weakness in mechanically ventilated patients. Methods We retrieved literature on prediction models for the risk of acquired weakness in mechanically ventilated patients in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang, and VIP. The retrieval period spanned from the inception of the databases to December 2023. Two researchers independently screened the literature, extracted data, and assessed the bias risk and applicability of the included studies. Results Sixteen articles were included. The area under the receiver operating characteristic curve for the included models ranged from 0.710 to 0.926. Bias risk assessment showed high bias risk in all models, but good applicability. The top 5 predictive factors in terms of frequency were mechanical ventilation time, age, Acute Physiology and Chronic Health Evaluation II score, blood lactate level, and multi-organ dysfunction. The combined AUC value of the six validation models was 0.800 (95%CI: 0.740-0.850), indicating good discrimination. Conclusion Prediction models for the risk of acquired weakness in mechanically ventilated patients demonstrate overall good predictive performance, but further optimization is needed in terms of data sources, design, and statistical analysis. Future efforts should focus on external validation of existing models or the development of high-quality predictive models.

Key words: mechanical ventilation, acquired weakness, intensive care unit, risk prediction model, systematic review

中图分类号: 

  • R473.56
[1] Pu L,Zhu B,Jiang L,et al.Weaning critically ill patients from mechanical ventilation: a prospective cohort study[J]. J Crit Care,2015,30(4):862-867.DOI: 10.1016/j.jcrc.2015.04.001.
[2] Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness[J]. Crit Care,2015,19(1):274. DOI:10.1186/s13054-015-0993-7.
[3] Stevens RD, Marshall SA, Cornblath DR,et al.A framework for diagnosing and classifying intensive care unit-acquired weakness[J]. Crit Care Med,2009,37(10 Suppl):S299-S308.DOI: 10.1097/CCM.0b013e3181b6ef67.
[4] Farhan H, Moreno-Duarte I, Latronico N, et al.Acquired muscle weakness in the surgical intensive care unit: nosology, epidemiology, diagnosis, and prevention[J]. Anesthesiology,2016,124(1):207-234.DOI:10.1097/ALN.0000000000000874.
[5] 鲁小丹,卫建华,沈建通,等. 预测模型系统评价的制作方法与步骤[J]. 中国循证医学杂志,2023,23(5):602-609. DOI:10.7507/1672-2531.202212112.
[6] Moons KG, de Groot JA, Bouwmeester W,et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744. DOI:10.1371/journal.pmed.1001744.
[7] 陈香萍,张奕,庄一渝,等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志, 2020,20(6):737-744. DOI:10.7057/1672-2351.201910087.
[8] Ioannidis JP.Interpretation of tests of heterogeneity and bias in meta-analysis[J]. J Eval Clin Pract,2008,14(5): 951-957.DOI: 10.1111/j.1365-2753.2008.00986.x.
[9] Wu Z, Lai J, Huang Q,et al.Machine learning-based model for predicting inpatient mortality in adults with traumatic brain injury: a systematic review and Meta-analysis[J]. Front Neurosci,2023(17):1285904.DOI:10.3389/fnins.2023.1285904.
[10] Egger M,Davey SG,Schneider M,et al.Bias in Meta-analysis detected by a simple, graphical test[J]. BMJ,1997,315(7109):629-634.DOI:10.1136/bmj.315.7109.629.
[11] 吴永花,袁善斌. ICU获得性肌无力的影响因素分析及风险预测模型的构建[J]. 全科护理,2023,21(29):4077-4080. DOI:10.12104/j.issn.1674-4748.2023.29.010.
[12] 赵昆,李璇,王一,等. 超声联合低频重复电刺激在老年ICU机械通气患者获得性肌无力中的预测价值[J]. 河北医药,2023,45(7):1031-1034.DOI:10.3969/j.issn.1002-7386.2023.07.015.
[13] 卓冰华,林枝珠,黄海娟,等. 预测ICU获得性衰弱风险的列线图模型的建立和验证[J].中国医学创新,2022,19(27): 166-170. DOI:10.3969/j.issn.1674-4985.2022.27.040.
[14] 王凌燕,吕慧,沈玉华,等. ICU获得性衰弱风险预测模型的构建及验证[J].中华危重病急救医学,2021,33(12): 1491-1496. DOI:10.3760/cma.j.cn121430-20210513-00707.
[15] 张晓旭,王悦,张柄涵,等. 个体化预测重症监护室获得性衰弱的风险列线图模型的建立[J]. 南昌大学学报(医学版), 2021,61(6):46-50.DOI:10.13764/j.cnki.ncdm.2021.06.009.
[16] 江竹月,邹圣强,胡佳民,等. 综合ICU患者获得性衰弱风险预测模型的构建与应用[J]. 中国实用护理杂志,2021,37(11):807-812. DOI:10.3760/cma.j.cn211501-20200809-03496.
[17] 武宁,李乐之,张红梅. 心血管外科术后患者ICU获得性衰弱的影响因素及风险预测[J]. 护士进修杂志,2021,36(19):1813-1819. DOI:10.16821/j.cnki.hsjx.2021.19.017.
[18] Witteveen E,Wieske L,Sommers J,et al.Early prediction of intensive care unit-acquired weakness: a multicenter external validation study[J]. J Intensive Care Med,2020,35(6): 595-605. DOI:10.1177/0885066618771001.
[19] Wolfe KS,Patel BK,Mackenzie EL,et al.Impact of vasoactive medications on ICU-acquired weakness in mechanically ventilated patients[J]. Chest,2018,154(4):781-787. DOI:10.1016/j.chest.2018.07.016.
[20] Hernández-Socorro CR, Saavedra P,Lopez-Fernandez JC,et al.Assessment of muscle wasting in long-stay ICU patients using a new ultrasound protocol[J]. Nutrients,2018,10(12):1849. DOI:10.3390/nu10121849.
[21] Diaz Ballve LP, Dargains N, Urrutia Inchaustegui JG,et al.Debilidad adquirida en la unidad de cuidados intensivos. Incidencia, factores de riesgo y su asociación con la debilidad inspiratoria. Estudio de cohorte observacional[J]. Rev Bras Ter Intensiva,2017,29(4):466-475.DOI:10.5935/0103-507X.20170063.
[22] 刘慧佳. 重症病房机械通气患者ICU获得性衰弱影响因素的研究[D]. 湖州:湖州师范学院,2017.
[23] Peñuelas O, Muriel A, Frutos-Vivar F,et al.Prediction and outcome of intensive care unit-acquired paresis[J]. J Intensive Care Med,2018,33(1):16-28.DOI:10.1177/0885066616643529.
[24] Wieske L,Witteveen E,Verhamme C,et al.Early prediction of intensive care unit-acquired weakness using easily available parameters: a prospective observational study[J]. PLoS One,2014,9(10):e111259. DOI:10.1371/journal.pone.0111259.
[25] De Jonghe B, Sharshar T, Lefaucheur JP,et al.Paresis acquired in the intensive care unit: a prospective multicenter study[J]. JAMA, 2002,288(22):2859-2867. DOI:10.1001/jama.288.22.2859.
[26] Garnacho-Montero J, Madrazo-Osuna J,García-Garmendia J,et al.Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients[J]. Intensive Care Med, 2001,27(8):1288-1296. DOI: 10.1007/s001340101009.
[27] Zhang W, Tang Y,Liu H,et al.Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: a systematic review[J]. PLoS One,2021,16(9): e257768.DOI: 10.1371/journal.pone.0257768.
[28] 刘杨,罗健,谢霖,等. ICU获得性衰弱风险预测模型的系统评价[J]. 中华现代护理杂志,2020,26(34):4769-4774.DOI: 10.3760/cma.j.cn115682-20200325-02174.
[29] 杨楠楠,蒋慧萍,史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报,2023,30(23):44-50.DOI:10.16460/j.issn1008-9969.2023.23.044.
[30] Wei XB, Wang ZH, Liao XL,et al.Role of neuromuscular blocking agents in acute respiratory distress syndrome: an updated Meta-analysis of randomized controlled trials[J].Front Pharmacol, 2020(10):1637. DOI: 10.3389/fphar.2019.01637.
[31] 李叶青,席修明,姜利,等. 机械通气患者ICU获得性肌无力危险因素分析[J]. 中华危重病急救医学,2019,31(11): 1351-1356.DOI:10.3760/cma.j.issn.2095-4352.2019.11.008.
[32] Godinjak A, Jusufovic S,Rama A,et al.Hyperlactatemia and the importance of repeated lactate measurements in critically ill patients[J]. Med Arch,2017,71(6):404-407. DOI:10.5455/medarh.2017.71.404-407.
[1] 郑小静, 严红虹, 李慧景, 陈思涓, 陈秀梅. 肝细胞癌伴低血糖症风险预测模型的构建与验证[J]. 护理学报, 2025, 32(4): 53-58.
[2] 伍丽华, 吴心雨, 赖湘瑜, 邓宝贵, 黄泽青, 赵耀, 廖源, 沈彩萍, 李瑜. 人工关节置换术后患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2025, 32(3): 12-16.
[3] 李嘉琪, 莫文娟, 王一棋, 王洁, 李梦楠, 刘兴, 冯佳. 基于COSMIN方法对慢性疼痛患者恐动症坦帕评分表的系统评价[J]. 护理学报, 2025, 32(2): 56-62.
[4] 李雪, 廖常菊, 张健, 丁娟, 陈晓丽, 胡玉庭. 三级甲等医院ICU护士睡眠障碍的风险预测模型构建及验证[J]. 护理学报, 2025, 32(2): 63-69.
[5] 余璐, 黄晓沁, 刘琳, 袁嘉敏, 邬青. 心力衰竭患者30天非计划性再入院风险预测模型的系统评价[J]. 护理学报, 2024, 31(8): 43-48.
[6] 吴林梅, 梁志金, 刘瑞杰, 钟静静, 邱予骅. COPD患者运动康复促进和阻碍因素的系统评价-基于CFIR多层次理论[J]. 护理学报, 2024, 31(5): 44-49.
[7] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[8] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[9] 赵国瑞, 刘高明, 张凤, 周颖. 宫颈癌患者术后下肢淋巴水肿风险预测模型的构建及验证[J]. 护理学报, 2024, 31(24): 7-12.
[10] 杨丽娜, 黄蓉, 姚梅琦, 王竹青, 徐怡婷, 谢佩敏. 产后母乳喂养行为中断风险预测模型的系统评价[J]. 护理学报, 2024, 31(23): 59-65.
[11] 章明阳, 刘京辉, 金雁, 徐文琪, 李斌飞, 黄珊, 杜李百合, 侯亚甜, 李小寒. 围手术期低体温风险预测模型的系统评价[J]. 护理学报, 2024, 31(22): 54-60.
[12] 张亦然, 王康美, 朱盛财, 朱璐, 黄沂. 中文版高血压患者自我管理评估工具的系统评价:基于COSMIN指南[J]. 护理学报, 2024, 31(19): 52-57.
[13] . 轻度认知障碍向阿尔兹海默病进展风险预测模型的系统评价[J]. 护理学报, 2024, 31(12): 47-53.
[14] 李颖馨, 陈琼, 范玲, 徐红贞, 胡晓静, 蒙景雯, 林艳, 彭文涛. 新生儿重症监护室住院早产儿发育支持护理的最佳证据总结[J]. 护理学报, 2024, 31(11): 28-34.
[15] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!